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Mutation

Given the alphabet V , a mutation rule a → b, with a, b  V∈  , can be 
applied over the string xay to produce the new string xby (observe that a 
mutation rule can be viewed as a substitution rule).
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Crossover

A crossover operation is an operation over strings defined as follows: Let 
x and y be two strings, then x▷◁y = {x
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Predicates

Let P and F be two disjoint subsets of an alphabet V, and let w  V∈ ∗ . We 
define the predicates φ(1) and φ(2) as follows:

1. φ(1) (w, P, F ) ≡ (P  alph(w))  (F ∩ alph(w) = )⊆ ∧ ∅  (strong predicate)
2. φ(2) (w, P, F ) ≡ (alph(w) ∩ P = )  (F ∩ alph(w) = )∅ ∧ ∅  (weak predicate)

We can extend the previous predicates to act over segments instead of 
symbols. Let P and F be two disjoint sets of finite strings over V , and let 
w  V∈ ∗ . We extend the predicates φ(1) and φ(2) as follows:

1. φ(1) (w, P, F ) ≡ (P  seg(w))  (F ∩ seg(w) = )⊆ ∧ ∅  (strong predicate)
2. φ(2) (w, P, F ) ≡ (seg(w) ∩ P = )  (F ∩ seg(w) = )∅ ∧ ∅  (weak predicate)



  

Genetic Processor

Let V be an alphabet. A genetic processor over V is defined by the tuple 
(MR,A,PI,FI,PO,FO,α,β), where:

• MR is a finite set of mutation rules over V.
• A is a multiset of strings over V with a finite support and an arbitrary large number 
of copies of every string.
• PI, FI  V⊆ ∗ are finite sets with the input permitting/forbidding contexts
• PO, FO  V⊆ ∗ are finite sets with the output permitting/forbidding contexts
• α  {1, 2}∈  defines the function mode with the following values:

– If α = 1 the processor applies mutation rules
– If α = 2 the processor applies crossover operations and MR = ∅

• β  {(1), (2)}∈  defines the type of the input/output filters of the processor. More 
precisely, for any word w  V∈ ∗ we define an input filter ρ(w) = φβ(w,PI,FI) and an 
output filer τ(w) = φβ(w,PO,FO). That is, ρ(w) (resp. τ(w)) indicates whether or not the 
word w passes the input (resp. the output) filter of the processor. We can extend the 
filters to act over languages. So, ρ(L) (resp. τ(L)) is the set of words of L that can 
pass the input (resp. output) filter of the processor.



  

Networks of Genetic Processors

A Generating Network of Genetic Processors (GNGP) is defined by the 
tuple Π = (V,V

out
,N
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• V is an alphabet.
• V

out
  V⊆  is an output alphabet.

• N
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Accepting Networks:

Generating Network:

Networks as Genetic algorithms:
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Types of Generating Networks of Genetic Processors

There are two types of generating networks depending of the accepting criteria:

• Output node.

• Output node and output alphabet

Generating Network:
Output 

processor



  

Networks of Genetic Processors are Computationally Complete

Theorem: Accepting Networks of Genetic Processors are 
computationally complete.



  

The proof will be based on the simulation of any arbitrary deterministic Turing 
machine during the computation of any input string.
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Snapshot codification.
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• Acceptance criteria:

When a snapshot with a final state appears, the string will enter into the 
corresponding N

q

out  processor, this processor will send the string to N
out

 and the 

computation halts in an acceptance mode.

• Rejects:

There are two situations in wich the computation rejects: when it doesn't exist 
defined movement and when the head is at the first cell of the tape and the machine 
tries to do a left movement. In both cases the snapshot does not get into any 
processor, so the process is interrupted and in a finite number of steps we will have 
two consecutive steps with the same chains in the same processors, this will stop 
the computation and the initial string will be rejected.

• Infinite computation:

The network also performs an infinite computation, and the input string will never be 
accepted.

Networks of Genetic Processors are Computationally Complete

Network Behavior:



  

The process is the same that in the deterministic way, but in this case a 
snapshot can enter more than one processor at a time. On the other hand 
if two snapshots enter the same processor, the rules will be applied 
independently.

Networks of Genetic Processors are Computationally Complete

Theorem: Every nondeterministic Turing machine can be 
simulated by an ANGP.



  

Networks of Genetic Processors and Genetic Algorithms

Acceptance criteria:

• Acceptance criterion I (AC-I):
Let w be an input string. We say that a PGA accepts w if w appears in a 
predefined survival population after a finite number of iterations (operators 
applications, fitness selection, and individuals migration).

• Acceptance criterion II (AC-II):
Let w be an input string. We say that a PGA accepts w if a distinguished 
individual x

yes
 appears in a predefined survival population after a finite number of 

iterations (operators applications, fitness selection, and individual migration). We 
say that the PGA rejects the input string if a distinguished individual x

not
 appears 

in a predefined survival population after a finite number of iterations (operators 
applications, fitness selection, and individual migration).



  

Networks of Genetic Processors and Genetic Algorithms

Both acceptance criteria are equivalent:



  

Multiple Populations: The crossover operations in one population 
are made with string of the same population.

Synchronicity and Full Migration Phenomena: In one step all the 
solutions are transmitted at the same time.

We can define consider a ANGP like a PGA with multiple 
populations, synchronicity, and full migration phenomena.

Theorem: Parallel Genetic Algorithms with multiple 
populations, synchronicity, and full migration 
phenomena are computationally complete.

Networks of Genetic Processors and Genetic Algorithms



  

The Chomsky’s Hierarchy

REG  CF  CS  RE⊂ ⊂ ⊂

REG:  Regular grammars

CF:     Context-free grammars

CS:     Context-sensitive grammars

RE:     Phrase structure grammars



  

Regular Grammars

Regular grammars (right linear grammars):

• A → aB, with A, B  N∈  and a  T∈

• A → a, with A  N∈  and a  T  {ε}∈ ∪



  

Regular Grammars

Every regular language can be generated by a 
GNGP with 3 processors.

Theorem:



  

Topology for Regular Grammars
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Context-free Grammars

Context-free grammars (Chomsky Normal Form):

• A → BC, with A, B, C  N∈

• A → a, with A  N∈  and a  T∈



  

Context-free Grammars

Theorem: Every context-free language can be generated by a 
GNGP with 4 processors.



  

Topology for Context-free Grammars
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Context-sensitive  Grammars

Context-sensitive grammars (Kuroda Normal Form):

• A → a, with A  N∈  and a  T∈

• A → B, with A, B  N∈

• A → BC with A, B, C  N∈

• AB → CD with A, B, C, D  N∈

In addition, we can add the production S → ε, whenever S does not appear to 
the right side of any production. In such a case, the grammar can generate the 
empty string.



  

Context-sensitive  Grammars

Theorem: Every context-sensitive language can be generated 
by a GNGP with 6 processors.



  

Topology for Context-sensitive  Grammars
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Phrase Structure Grammars

Phrase structure grammars (extended Kuroda Normal Form):

• S → ε

• A → a, with A  N∈  and a  T∈

• A → B, with A, B  N∈

• A → BC with A, B, C  N∈

• AB → AC with A, B, C  N∈

• AB → CB, with A, B, C  N∈

• AB → B, with A, B  N∈



  

Phrase Structure Grammars

Theorem: Every recursively enumerable language can be 
generated by a GNGP with 8 processors.



  

Topology for Phrase Structure Grammars
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End

Thank you

¿Questions?
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