

Networks of Genetic Processors as
language generators

Marcelino Campos Francés

Departamento de Sistemas Informáticos y computación

Universidad Politécnica de Valencia

N
1

N
2

N
3

N
4

N
5

Processor

Multiset
of Strings

abba ∞
bbabb ∞
aab ∞

There are an arbitrary large
number of copies of every string

Networks of Genetic Processors

Network

Mutation

Given the alphabet V , a mutation rule a → b, with a, b V∈ , can be
applied over the string xay to produce the new string xby (observe that a
mutation rule can be viewed as a substitution rule).

11101000

11001000

Crossover

A crossover operation is an operation over strings defined as follows: Let
x and y be two strings, then x▷◁y = {x

1
y

2
 , y

1
x

2
 : x = x

1
x

2
 and y = y

1
y

2
}.

11101000 11001010

11101010 11001000

Output
Filter

Input
Filter

w1
w2
w3

w1
w2

w1

w1
w2
w3

w3 w1

Filters

Predicates

Let P and F be two disjoint subsets of an alphabet V, and let w V∈ ∗ . We
define the predicates φ(1) and φ(2) as follows:

1. φ(1) (w, P, F) ≡ (P alph(w)) (F ∩ alph(w) =)⊆ ∧ ∅ (strong predicate)
2. φ(2) (w, P, F) ≡ (alph(w) ∩ P =) (F ∩ alph(w) =)∅ ∧ ∅ (weak predicate)

We can extend the previous predicates to act over segments instead of
symbols. Let P and F be two disjoint sets of finite strings over V , and let
w V∈ ∗ . We extend the predicates φ(1) and φ(2) as follows:

1. φ(1) (w, P, F) ≡ (P seg(w)) (F ∩ seg(w) =)⊆ ∧ ∅ (strong predicate)
2. φ(2) (w, P, F) ≡ (seg(w) ∩ P =) (F ∩ seg(w) =)∅ ∧ ∅ (weak predicate)

Genetic Processor

Let V be an alphabet. A genetic processor over V is defined by the tuple
(MR,A,PI,FI,PO,FO,α,β), where:

• MR is a finite set of mutation rules over V.
• A is a multiset of strings over V with a finite support and an arbitrary large number
of copies of every string.
• PI, FI V⊆ ∗ are finite sets with the input permitting/forbidding contexts
• PO, FO V⊆ ∗ are finite sets with the output permitting/forbidding contexts
• α {1, 2}∈ defines the function mode with the following values:

– If α = 1 the processor applies mutation rules
– If α = 2 the processor applies crossover operations and MR = ∅

• β {(1), (2)}∈ defines the type of the input/output filters of the processor. More
precisely, for any word w V∈ ∗ we define an input filter ρ(w) = φβ(w,PI,FI) and an
output filer τ(w) = φβ(w,PO,FO). That is, ρ(w) (resp. τ(w)) indicates whether or not the
word w passes the input (resp. the output) filter of the processor. We can extend the
filters to act over languages. So, ρ(L) (resp. τ(L)) is the set of words of L that can
pass the input (resp. output) filter of the processor.

Networks of Genetic Processors

A Generating Network of Genetic Processors (GNGP) is defined by the
tuple Π = (V,V

out
,N

1
,N

2
,...,N

n
,G,N,N

out
), where:

• V is an alphabet.
• V

out
 V⊆ is an output alphabet.

• N
i
 (1 ≤ i ≤ n) is a genetic processor over V.

• G = (X
G
,E

G
) is a graph.

• N : X
G
 → {N

1
,N

2
,...,N

n
} is a mapping that associates the genetic processor

N
i
 to the node i X∈

G

• N
out

 {N∈
1
,· · ·,N

n
} is the output processor.

Accepting Networks:

Generating Network:

Networks as Genetic algorithms:

Input
processor

Output
processor

Output
processor

The filters implements the
restrictions and the
optimization function.

Types of Networks of Genetic Processors

Types of Generating Networks of Genetic Processors

There are two types of generating networks depending of the accepting criteria:

• Output node.

• Output node and output alphabet

Generating Network:
Output

processor

Networks of Genetic Processors are Computationally Complete

Theorem: Accepting Networks of Genetic Processors are
computationally complete.

The proof will be based on the simulation of any arbitrary deterministic Turing
machine during the computation of any input string.

q
i

 snapshot

 aabq
i
bab

(q
i
,b) → (q

j
,a,R)(q

i
,b) → (q

j
,a,L)

aaq
j
baab aabaq

j
ab

Networks of Genetic Processors are Computationally Complete

Tape

head

Finite
control

Snapshot codification.

aabq
i
bab q

i
aab$babF

Network:

Networks of Genetic Processors are Computationally Complete

• Acceptance criteria:

When a snapshot with a final state appears, the string will enter into the
corresponding N

q

out processor, this processor will send the string to N
out

 and the

computation halts in an acceptance mode.

• Rejects:

There are two situations in wich the computation rejects: when it doesn't exist
defined movement and when the head is at the first cell of the tape and the machine
tries to do a left movement. In both cases the snapshot does not get into any
processor, so the process is interrupted and in a finite number of steps we will have
two consecutive steps with the same chains in the same processors, this will stop
the computation and the initial string will be rejected.

• Infinite computation:

The network also performs an infinite computation, and the input string will never be
accepted.

Networks of Genetic Processors are Computationally Complete

Network Behavior:

The process is the same that in the deterministic way, but in this case a
snapshot can enter more than one processor at a time. On the other hand
if two snapshots enter the same processor, the rules will be applied
independently.

Networks of Genetic Processors are Computationally Complete

Theorem: Every nondeterministic Turing machine can be
simulated by an ANGP.

Networks of Genetic Processors and Genetic Algorithms

Acceptance criteria:

• Acceptance criterion I (AC-I):
Let w be an input string. We say that a PGA accepts w if w appears in a
predefined survival population after a finite number of iterations (operators
applications, fitness selection, and individuals migration).

• Acceptance criterion II (AC-II):
Let w be an input string. We say that a PGA accepts w if a distinguished
individual x

yes
 appears in a predefined survival population after a finite number of

iterations (operators applications, fitness selection, and individual migration). We
say that the PGA rejects the input string if a distinguished individual x

not
 appears

in a predefined survival population after a finite number of iterations (operators
applications, fitness selection, and individual migration).

Networks of Genetic Processors and Genetic Algorithms

Both acceptance criteria are equivalent:

Multiple Populations: The crossover operations in one population
are made with string of the same population.

Synchronicity and Full Migration Phenomena: In one step all the
solutions are transmitted at the same time.

We can define consider a ANGP like a PGA with multiple
populations, synchronicity, and full migration phenomena.

Theorem: Parallel Genetic Algorithms with multiple
populations, synchronicity, and full migration
phenomena are computationally complete.

Networks of Genetic Processors and Genetic Algorithms

The Chomsky’s Hierarchy

REG CF CS RE⊂ ⊂ ⊂

REG: Regular grammars

CF: Context-free grammars

CS: Context-sensitive grammars

RE: Phrase structure grammars

Regular Grammars

Regular grammars (right linear grammars):

• A → aB, with A, B N∈ and a T∈

• A → a, with A N∈ and a T {ε}∈ ∪

Regular Grammars

Every regular language can be generated by a
GNGP with 3 processors.

Theorem:

Topology for Regular Grammars

N
1

N
2

N
3

crossover

A → a
A → bC

Topology for Regular Grammars

N
1

N
2

N
3

A → a
A → bC

abbaA

abbaa

Topology for Regular Grammars

crossover

N
1

N
2

N
3

A → a
A → bC

abbaA

abba[bC]

abba[bC] Ĉ

abba[bC]Ĉ

crossover

abba[bC]Ĉ

abbabC

N
1

N
2

N
3

Topology for Regular Grammars

crossover

Context-free Grammars

Context-free grammars (Chomsky Normal Form):

• A → BC, with A, B, C N∈

• A → a, with A N∈ and a T∈

Context-free Grammars

Theorem: Every context-free language can be generated by a
GNGP with 4 processors.

Topology for Context-free Grammars

N
1

N
2

N
3 N

4

A → a
A → BC

Topology for Context-free Grammars

crossover

N
1

N
2

N
3 N

4

A → a
A → BC

aBbaABa

aBbaaBa

Topology for Context-free Grammars

crossover

N
1

N
2

N
3 N

4

A → a
A → BC

aAbBa

a[[BC]]bBa

a[[BC]]bBa

a[[BC]][Cb][bB][Ba]'

a[[BC]][Cb][bB][Ba]' â

a[[BC]][Cb][bB][Ba]'â

a[[BC]][Cb][bB][Ba]'â

aBCbBa

crossover

N
1 N

2

N
3

N
4

Topology for Context-free Grammars

crossover

Context-sensitive Grammars

Context-sensitive grammars (Kuroda Normal Form):

• A → a, with A N∈ and a T∈

• A → B, with A, B N∈

• A → BC with A, B, C N∈

• AB → CD with A, B, C, D N∈

In addition, we can add the production S → ε, whenever S does not appear to
the right side of any production. In such a case, the grammar can generate the
empty string.

Context-sensitive Grammars

Theorem: Every context-sensitive language can be generated
by a GNGP with 6 processors.

Topology for Context-sensitive Grammars

N
1

N
2

N
3

N
4

N
5

N
6

A → a
A → B
A → BC
AB → CD

Topology for Context-sensitive Grammars

crossover

N
1

N
2

N
3

N
4

N
5

N
6

A → a
A → B
A → BC
AB → CD

aBbaABa

aBbaaBa

Topology for Context-sensitive Grammars

crossover

N
1

N
2

N
3

N
4

N
5

N
6

A → a
A → B
A → BC
AB → CD

aBbaABa

aBbaBBa

Topology for Context-sensitive Grammars

crossover

N
1

N
2

N
3

N
4

N
5

N
6

A → a
A → B
A → BC
AB → CD

aAbBa

a[[BC]]bBa

a[[BC]]bBa

a[[BC]][Cb][bB][Ba]'

a[[BC]][Cb][bB][Ba]' â

a[[BC]][Cb][bB][Ba]'â

a[[BC]][Cb][bB][Ba]'â

aBCbBa

crossover

N
1 N

2

N
3

N
4

Topology for Context-sensitive Grammars

crossover

N
1

N
2

N
3

N
4

N
5

N
6

A → a
A → B
A → BC
AB → CD

aCABaC

aC[[ACD]BaC

aC[[ACD]BaC

aC[[ACD][BCD]]aC

aC[[ACD][BCD]]aC

aCCDaC

N
1

N
5

N
6

Topology for Context-sensitive Grammars

crossover

Phrase Structure Grammars

Phrase structure grammars (extended Kuroda Normal Form):

• S → ε

• A → a, with A N∈ and a T∈

• A → B, with A, B N∈

• A → BC with A, B, C N∈

• AB → AC with A, B, C N∈

• AB → CB, with A, B, C N∈

• AB → B, with A, B N∈

Phrase Structure Grammars

Theorem: Every recursively enumerable language can be
generated by a GNGP with 8 processors.

Topology for Phrase Structure Grammars

N
1

N
2

N
3

N
4

N
8

N
7

N
5

N
6

A → a
A → B
A → BC
AB → AC
AB → CB
AB → B

Topology for Phrase Structure Grammars

crossover

crossover

N
1

N
2

N
3

N
4

N
8

N
7

N
5

N
6

A → a
A → B
A → BC
AB → AC
AB → CB
AB → BaBbaABa

aBbaaBa

Topology for Phrase Structure Grammars

crossover

crossover

N
1

N
2

N
3

N
4

N
8

N
7

N
5

N
6

A → a
A → B
A → BC
AB → AC
AB → CB
AB → BaBbaABa

aBbaBBa

Topology for Phrase Structure Grammars

crossover

crossover

N
1

N
2

N
3

N
4

N
8

N
7

N
5

N
6

A → a
A → B
A → BC
AB → AC
AB → CB
AB → B

aAbBa

a[[BC]]bBa

a[[BC]]bBa

a[[BC]][Cb][bB][Ba]' â

a[[BC]][Cb][bB][Ba]'â

a[[BC]][Cb][bB][Ba]'â

aBCbBa

crossover

N
1 N

2

N
3

N
4

Topology for Phrase Structure Grammars

crossover

crossover

N
1

N
2

N
3

N
4

N
8

N
7

N
5

N
6

A → a
A → B
A → BC
AB → AC
AB → CB
AB → B

aCABaC

aC[[AAC]BaC

aC[[AAC]BaC

aC[[AAC][BAC]]aC

aC[[AAC][BAC]]aC

aCACaC

N
1

N
5

N
6

Topology for Phrase Structure Grammars

crossover

crossover

N
1

N
2

N
3

N
4

N
8

N
7

N
5

N
6

A → a
A → B
A → BC
AB → AC
AB → CB
AB → B

aCABaC

aC[[ACB]BaC

aC[[ACB]BaC

aC[[ACB][BCB]]aC

aC[[ACB][BCB]]aC

aCCBaC

N
1

N
5

N
6

Topology for Phrase Structure Grammars

crossover

crossover

N
1

N
2

N
3

N
4

N
8

N
7

N
5

N
6

A → a
A → B
A → BC
AB → AC
AB → CB
AB → B

aABbC

a<<AB>>BbC

a<<AB>><Bb><bC><CX>'

a<<AB>>BbC

a<<AB>><Bb><bC><CX>'

a<<AB>><Bb><bC>

a<<AB>><Bb><bC>

aBbC

crossover

N
1

N
7

N
8

N
4

Topology for Phrase Structure Grammars

crossover

crossover

Publications

●Marcelino Campos, José M. Sempere.
A characterization of formal languages through Networks of Genetic Processors.
(submitted)

●Solving Combinatorial Problems with Networks of Genetic Processors.
International Journal “Information Technologies and Knowledge”
Vol.7 No. 1, pp 65-71. 2013

●Marcelino Campos, José M. Sempere.
Accepting Networks of Genetic Processors are computationally complete.
Theoretical Computer Science Vol. 456, pp 18-29. 2012

●M. Campos, J. González, T.A. Pérez, J. M. Sempere.
Implementing Evolutionary Processors in JAVA: A case study.
13th International Symposium on Artificial Life and Robotics (AROB 2008)
(Beppu, Japan) January 31 - February 2.
2008 Proceedings edited by M. Sugisaka and H. Tanaka pp 510-515.
2008 ISBN: 978-4-9902880-2-0

End

Thank you

¿Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51

