

Networks of Evolutionary Processors: Words and Pictures

Group of Mathematical Modelling and Bioinspired Algorithms

Universidad Politécnica de Madrid

Summary

- 1. Preliminaries
- 2. Evolutionary Pictures Operations
- 3. Circular Permutation Rules
- 4. Filters Predicates
- 5. Picture Processors
- 6. Accepting Networks of Picture Processors
- 7. Problems

1. Preliminaries

- **Goal**: To apply distributed computing methods to networks of submicroprocessor devices, e.g., biological cellular networks or networks of nano-devices.
- Question: do tiny bio/nano nodes "compute" and/or "communicate" essentially the same as a computer?
- **Our attempt**: Although the computation and communication capabilities of each individual device in the new model are, by design, much weaker than those of a computer, we show that some of the most important and extensively studied distributed computing problems can still be solved efficiently.
- Theorists: YES, WE CAN!
- Engineers: ?
- Biologists: ?

1. Preliminaries

• V is an alphabet

$$V^* = \{ \omega \mid \omega = \omega_1 \omega_2 \dots \omega_p \ , \ \omega_i \in V \ \land p \ \in \mathbb{N} \}$$

- ω is a word over V and V^{*} is the set of words over V
- The alphabet of ω is defined by $alph(\omega) = \{ a \in V \mid a \in \omega \}$
- $L \subseteq V^*$ is a language over V

1. Preliminaries

• A picture π over an alphabet V is a two-dimensional array of elements from V.

$$\pi = (p_i^J)_{i \in \mathbb{N}}^{J \in \mathbb{N}} \land p_i^J \in V$$

$$V_*^* = \{\pi \mid \pi \text{ is a picture over } V\}$$

 $\overline{\pi}$ is the number of rows of π $|\pi|$ is the number of columns of π size (π) = ($\overline{\pi}$, $|\pi|$)

- Row and column concatenation operations Let π and $\rho \in V_*^*$ two pictures over V $size(\pi) = (m, n), size(\rho) = (m', n')$
- π © ρ is the column concatenation of π and ρ and it is defined only if

m = m'

• Row and column concatenation operations $Let \pi and \rho \in V_*^* two \ pictures \ over \ V$ $size(\pi) = (m, n), size(\rho) = (m', n')$

• π [®] ρ is the row concatenation of π and ρ and it is defined only if

Computing (ISBBC)

• Column right-quotient of π with ρ

$$\pi \ / \ \leftarrow \rho = \theta \Leftrightarrow \pi = \theta @ \rho$$

- Column left-quotient of π with ρ

$$\pi / \rightarrow \rho = \theta \Leftrightarrow \pi = \rho \otimes \theta$$

- Row down – quotient of π with ρ

$$\pi / \downarrow \rho = \theta \Leftrightarrow \pi = \theta \circ \rho$$

• Row up – quotient of π with ρ

$$\pi / \uparrow \rho = \theta \Leftrightarrow \pi = \rho \circ \theta$$

• Evolutionary rules

 $\sigma \equiv a \rightarrow b$, is a:

- substitution rule iff $a \neq \epsilon \land b \neq \epsilon$
- deletion rule iff a $\neq \epsilon \land b = \epsilon$
- insertion rule iff a = $\epsilon \land b \neq \epsilon$

- 2. Evolutionary Pictures Operations
- Definitions:

$$Sub_{V} = \{\sigma \mid \sigma \text{ is a substitution rule}\}$$
$$Del_{V} = \{\sigma \mid \sigma \text{ is a deletion rule}\}$$

- Actions for evolutionary rules when are applied on pictures
- Given a rule σ an a picture $\pi \in V_m^n$ we defined the following actions:

 $\sigma^{|}(\pi)$ $\sigma^{-}(\pi)$ $\sigma^+(\pi)$

 $-If \sigma \equiv a \rightarrow b \in Sub_V$ then

-If the first column of contains an occurrence of a, then $\sigma^{\leftarrow}(\pi)$ is the set of all pictures π' such that the following conditions are satisfied:

 $i. \quad \exists \ 1 \leq i \ \leq m \ , \pi(i,1) = a \ \land \ \pi'(i,1) = b,$

ii. $\pi(k,l) = \pi'(k,l)$ for all $(k,l) \in [m]x[n] - \{(i,1)\}$.

-If this column does not contain any occurrence of a, then $\sigma^{\leftarrow}(\pi) = \{\pi\}$

$$\sigma \leftarrow \left(\begin{bmatrix} a & b & b & c \\ c & b & b & a \\ c & c & b & c \\ a & b & c & b \end{bmatrix} \right) = \left\{ \begin{bmatrix} b & b & b & c \\ c & b & b & a \\ c & c & b & c \\ a & b & c & b \end{bmatrix} , \begin{bmatrix} a & b & b & c \\ c & b & b & a \\ c & c & b & c \\ b & b & c & b \end{bmatrix} \right\}$$

$$\sigma^{\leftarrow} \left(\begin{bmatrix} c & b & b & c \\ c & b & b & a \\ c & c & b & c \\ b & b & c & b \end{bmatrix} \right) = \left\{ \begin{bmatrix} c & b & b & c \\ c & b & b & a \\ c & c & b & c \\ b & b & c & b \end{bmatrix} \right\}$$

International School on Biomolecular and Biocellular Computing (ISBBC)

• In an analogous way can be defined

 $\sigma^{\rightarrow}(\pi), \sigma^{\uparrow}(\pi), \sigma^{\downarrow}(\pi), \sigma^{+}(\pi)$

as the set of all pictures obtained by applying σ to the right most column, to the first row, to the las row, and to any column/row of π .

$$\sigma^{\uparrow} \left(\begin{bmatrix} a & b & b & c \\ c & b & b & a \\ c & c & b & c \\ a & b & c & b \end{bmatrix} \right) = \left\{ \begin{bmatrix} a & b & b & c \\ c & b & b & b \\ c & c & b & c \\ a & b & c & b \end{bmatrix} \right\}$$
$$\sigma^{\uparrow} \left(\begin{bmatrix} a & b & b & c \\ c & b & b & a \\ c & c & b & c \\ a & b & c & b \end{bmatrix} \right) = \left\{ \begin{bmatrix} b & b & b & c \\ c & b & b & a \\ c & c & b & c \\ a & b & c & b \end{bmatrix} \right\}$$

$$\sigma^{\downarrow} \left(\begin{bmatrix} a & b & b & c \\ c & b & b & a \\ c & c & b & c \\ a & b & c & b \end{bmatrix} \right) = \left\{ \begin{bmatrix} a & b & b & c \\ c & b & b & a \\ c & c & b & c \\ b & b & c & b \end{bmatrix} \right\}$$

$$\sigma^{+} \left(\begin{bmatrix} a & b & b & c \\ c & b & b & a \\ c & c & b & c \\ a & b & c & b \end{bmatrix} \right) = \left\{ \begin{bmatrix} b & b & b & c \\ c & b & b & a \\ c & c & b & c \\ a & b & c & b \end{bmatrix} \begin{bmatrix} a & b & b & c \\ c & b & b & a \\ c & c & b & c \\ a & b & c & b \end{bmatrix} \right\}$$

• If
$$\sigma \equiv a \rightarrow \varepsilon \in Del_v$$
 then
 $\sigma^{\leftarrow}(\pi) = \begin{cases} \pi / \leftarrow \rho \\ \pi, otherwise \end{cases}$

Where ρ is the leftmost column of π , and ρ contains at least one occurrence of 'a'

$$\sigma \leftarrow \left(\begin{bmatrix} a & b & b & c \\ c & b & b & a \\ c & c & b & c \\ a & b & c & b \end{bmatrix} \right) = \begin{bmatrix} b & b & c \\ b & b & a \\ c & b & c \\ b & c & b \end{bmatrix}$$

International School on Biomolecular and Biocellular Computing (ISBBC)

Analogously are defined

 $\sigma^{\rightarrow}(\pi), \sigma^{\uparrow}(\pi), \sigma^{\downarrow}(\pi)$

- 2. Evolutionary Pictures Operations
- Furthermore $\sigma^{\dagger}(\pi)$ ($\sigma^{-}(\pi)$) is the set obtained from π by deleting an arbitrary column (row) of π containing the symbol 'a', then each column (row) is removed from different copies of π .
- $\bullet \operatorname{If} \pi$ does not contain a copy of 'a' then

$$\sigma^{|}(\pi) = \sigma^{-}(\pi) = \{\pi\}$$

$$\sigma^{\dagger} \left(\begin{bmatrix} a & b & b & a \\ c & b & b & a \\ c & c & b & c \\ a & b & c & b \end{bmatrix} \right) = \left\{ \begin{bmatrix} b & b & a \\ b & b & a \\ c & b & c \\ b & c & b \end{bmatrix}, \begin{bmatrix} a & b & b \\ c & b & b \\ c & c & b \\ a & b & c \end{bmatrix} \right\}$$

- 2. Evolutionary Pictures Operations
- Definitions:
- i. For every rule σ , symbol $\alpha = \{\leftarrow, \rightarrow, \uparrow, \downarrow, |, -, +\}$ and $L \subseteq V_*^*$; we define the α -action of σ on Lby

$$\sigma^{\alpha}(L) = \bigcup_{\pi \in L} \sigma^{\alpha}(\pi)$$

Note: + is defined only for substitution rules M, while | and – are defined only for deletion rules.

Definitions:

ii. Given a finite set of rules M, we define the α -action of M on the picture π and the language L by

$$M^{\alpha}(\pi) = \bigcup_{\sigma \in M} \sigma^{\alpha}(\pi)$$
 and
 $M^{\alpha}(L) = \bigcup_{\pi \in L} M^{\alpha}(\pi)$

3. Circular Permutation Rules

3. Circular Permutation Rules

International School on Biomolecular and Biocellular Computing (ISBBC)

3. Circular Permutation Rules

• Definitions: For every $\circ \in \{ \curvearrowleft, \urcorner, \circlearrowright, \zeta, \zeta \}$ and $L \subseteq V_*^*$, we define $\circ (L) = \{ \circ (\pi) | \pi \in L \}$

4. Filters Predicates

- As usual, we define two different policies for defining filters, strong and week defined by the following two predicates.
- Consider $P, F \subseteq V$ the set of permitting and forbidding symbols respectively

$rc_{s}(\pi; P, F) \equiv P \subseteq alph(\pi) \land F \cap alph(\pi) = \emptyset$ $rc_{w}(\pi; P, F) \equiv P \cap alph(\pi) \neq \emptyset \land F \cap alph(\pi) = \emptyset$

4. Filters Predicates

• For every picture language $L \subseteq V_*^*$ and $\beta \in \{s, w\}$ we define:

$rc_{\beta}(L; P, F) = \{\pi \in L | rc_{\beta}(\pi; P, F) = true\}$

5. Picture Processors

• Evolutionary Picture Processor (EPP) An evolutionary picture Processor (EPP) over V is a 5-tuple (M,PI,FI,PO,FO)

where:

- $M \subseteq Sub_V$ or $M \subseteq Del_V$ (specialization)
- $PI, FI \subseteq V$ (permitting / forbidding input symbols)
- $PO, FO \subseteq V(permitting / forbidding outpt symbols)$

5. Picture Processors

• Circularly Permuted Picture Processor (CPPP) A CPPP over V is a 5-tuple (M,PI,PO,FI,FO)

where:

• The rest of parameters are identical to those defined for evolutionary processors.

• An ANPP is a 9-tuple

 $\Gamma=(V, U, G, N, \alpha, \beta, \underline{In}, \underline{Halt}, \underline{Accept})$

where:

- V, U are the input and network alphabet respectively $V \subseteq U$,
- $G = (X_G, E_G)$ is an undirected graph without loops,
- N is a mapping which associates each node $x \in X_G$ the picture processor

$$N(x) = (M_x, PI_x, PO_x, FI_x, FO_x)$$

- $\alpha: X_G \to \{ \to, \leftarrow, \uparrow, \downarrow, |, -, * \}$ gives the action mode of the rules of node x on the pictures existing in that node. If x is a CPPP then $\alpha(x) = *$
- $\beta: X_G \rightarrow \{s, w\}$ defines the type of input and output filters

Input filter:
$$\rho_x(.) = rc_{\beta(x)}(.; PI_x, FI_x)$$

Output filter: $\tau_x(.) = rc_{\beta(x)}(.; PO_x, FO_x)$

• <u>In</u>, <u>Halt</u>, <u>Accept</u> $\in X_G$ are the input node, the halting node and the accepting node of Γ respectively.

• Definitions:

- 1. We say that $Card(X_G)$ is the size of Γ .
- 2. A configuration of an ANPP Γ is a mapping $C: X_G \to 2^{U_*^*}$
- which associates a finite set of pictures with every node in the graph.

• Given a picture $\pi \in V_*^*$, the initial configuration of Γ on π is defined by

$$C_0^{(\pi)}(\underline{In}) = \{\pi\}$$

$$C_0^{(\pi)}(x) = \emptyset \text{ for all } x \in X_G \setminus \{\underline{In}\}$$

A configuration can change via a processing step or a communication step

Processing step

$$C \Rightarrow C' iff$$

$$C'(x) = M_x^{\alpha(x)} (C(x)) \forall x \in X_G \setminus \{\underline{In}\}$$

• Communication step $C \vdash C' iff$ $C'(x) = (C(x) \setminus \tau_x(C(x)) \cup \bigcup_{\{x,y\} \in E_G} (\tau_y(C(y)) \cap \rho_x(C(y))), \forall x \in X_G$

• Definition:

Let Γ be an ANPP; the configuration of Γ on an input picture $\pi \in V_*^*$ is a sequence of configurations

$$C_0^{(\pi)} \Longrightarrow C_1^{(\pi)} \vdash C_2^{(\pi)} \Longrightarrow \dots C_n^{(\pi)}$$

where $C_0^{(\pi)}$ is the initial configuration of Γ on π

- A computation halts if there exits a configuration such that the set of pictures existing in the halting node is non-empty.
- The picture language decided by Γ is: $L(\Gamma) = \{\pi \in V_*^* | the \ computation \ of \ \Gamma$ $on \ \pi \ halts \ with \ a$ $non - empty \ accepting \ node \}$

• 2-Dimensional pattern matching Given a picture π one can decide whether π is a subpicture of a given picture

What about 2-disjoint or overlapping occurrences?

SOLVED

• Th. [BBLM – TPNC 2014]

- 1. Let π be a picture of size (k; n) for some $1 \le k \le 3$ and $n \ge 1$. The language $\{\pi\}$ can be accepted by an ANEPP.
- 2. Given a finite set F of patterns of size (k; l) and (l; k) for all $1 \le k \le 3$ and $l \ge 1$, the pattern matching problem with patterns from F can be solved by ANEPPs in O(n+m+kl+k) computational (processing and communication) steps.

H. Bordihn, P. Bottoni, A. Labella and V. Mitrana: "Solving 2D-Pattern Matching with Networks of Picture Processors", Proceedings of Theory and Practice of Natural Computing - Third International Conference, 157--168, 2014.

- Let F be a finite set of pictures; the picture language F_*^* is the minimal set of pictures such that:
- $i. \quad F \subseteq F_*^*,$
- ii. If $\pi, \rho \in F_*^*$, then $\pi \otimes \rho \in F_*^*$ and $\pi \otimes \rho \in F_*^*$ provided that both of them exist
- For a given picture π , one can decide whether $\pi \in F_*^*$?
- If all picture of *F* are of the same size, THE PROBLEM IS SOLVED

• Th. [BBLM – Soft Computing 2016]

 Let (k; l) be two positive integers and F be a finite set of pictures of size (k; l). The language F^{*} can be decided by ANEPPs in O(n + m + kl) computational (processing and communication) steps.

H. Bordihn, P. Bottoni, A. Labella, V. Mitrana: "Networks of picture processors as problem solvers", Soft Computing, 2016.

• A picture π is row/column scattered in a picture ϑ if ϑ contains a subpicture ρ such that all the row/column of π appears as row/column of ρ in the same order.

For a given pattern π and an arbitrary picture ϑ one can decide whether π is row/column scattered in ϑ

• The Hamming distance between 2 pictures of the same size is the number of positions at which the corresponding symbols are different.

For a given pattern π , a positive integer k, and an arbitrary picture ϑ one can decide whether ϑ contains a subpicture that is at the Hamming distance of at most k from π ?

Thank you very much