
ISBBC17
Valencia

Networks of Evolutionary
Processors for Optimization

Mathematical Models & Biocomputing Algorithms Group

O
ut

lin
e

1. A brief reminder of Networks of
Bioinspired Processors – NBP

2. Optimization problems: NEPO

3. Example: 𝟎𝟎/𝟏𝟏 Knapsack Problem

2

3

A brief reminder of Networks of
Bioinspired Processors - NBP

1. A brief reminder of NBP

 Highly parallel and distributed computing models.
[Mitrana et al., 2001-2007-2014]

 Symbolic processing
• Point mutations DNA sequences.
• Evolutionary rules.
• Data is represented by words (strings).
• Selection process:

– Context conditions.
– Polarization.

 Can be used to solve NP-complete problems.

4

1. A brief reminder of NBP

5

[

• NBP family share the same architecture:
‒ Simple operations, normally rewriting rules
‒ Graph like structure:
 Processing within nodes, communicating through edges.
‒ Extensible and scalable.

• Similar to Bulk Synchronous Parallel model (BSP).
 [Valiant, 1990]
 Parallel computing architecture implemented by Google Pregel,
 Giraph, Dato, etc.

5

Underlying architecture

6

NBP Family

Evolutionary Splicing Genetic

Polarized

Insertion
Deletion
Substitution

Splicing Splicing
Crossover

Context Context Context

Insertion
Deletion
Substitution

Polarization

Numerical evaluation over words
• Used from a qualitative perspective
• Don’t distinguish the overall charge:

negative, positive o neutral only

NEP (evolutionary) dynamics

…

Out

In

P1
P2

Pn

w

w’
w’ w’

w’
w’

w’

Rules + Communication

Evolutionary step

Apply Rules

Communication step

Filter Output

Filter Input

(Polarized or not)

1. A brief reminder of NBP

8

• Simple NEP [1]

– Apply evolutionary rules.
– Use context conditions to communicate (filtering).

• Polarized NEP [2]

– Apply evolutionary rules.
– Use valuation of words to communicate (the sign only).

NEP have qualitative behavior: processors do not preserve
any information over data while the network is working.

8

Networks of evolutionary processors - NEP

[1] J. Castellanos, C. Martín-Vide, V. Mitrana, J. Sempere, Networks of evolutionary processors, Acta Inf. 39 (6–7) (2003) 517–529.
[2] P. Alarcón, F. Arroyo, V. Mitrana, Networks of polarized evolutionary processors, Inf. Sci. 265 (2014) 189–197.

1. A brief reminder of NBP

9

NEP models …

Do not provide any information about data structure.
 Any permutation of a given word can pass the same filters.

 Lack of details about the interaction between the
symbols which are present in the current word.

For instance, suppose that a word represents a substance. It is not
possible to determine if some chemical reaction will be take place by
considering the symbols in the word only.

 Can’t track / store relevant data while computing.
9

Drawbacks for NEP models

10

Optimization problems: NEPO

2. Optimization problems: NEPO

11 11

Neccesity of addressing optimization problems

NP-complete problems
– Knapsack Problems.

Machine learning problems
– Supervised and

unsupervised learning.
– Pattern recognition.
– Generalized assignment.
– Others.

12

NEP Family

Polarized
Insertion
Deletion
Substitution

Polarization

Evolutionary
Insertion
Deletion
Substitution

Context

Generalized
Insertion
Deletion
Substitution

Polarization

Optimization
Insertion
Deletion
Substitution

Fitness Function

2. Optimization problems: NEPO

13

• The design of a solution to an optimization problem can
be built up as an architecture of different NEP, working
each one as a solver of one or several parts of the
problem in question.

• An agent is a list of parameters which indicate how to
select, by using some criterion, the best elements of a
given dataset. Precisely, an agent can be viewed as a
generic vector 𝐴𝐴𝑖𝑖 = 𝑎𝑎𝑖𝑖1, 𝑎𝑎𝑖𝑖2, … , 𝑎𝑎𝑖𝑖𝑘𝑘 , where each 𝑎𝑎𝑖𝑖𝑠𝑠 is
updated when computing the fitness (objective) function.

• A set of 𝑁𝑁 agents is represented by a matrix 𝐴𝐴𝑖𝑖 𝑖𝑖=1
𝑁𝑁 .

13

What’s new?

2. Optimization problems: NEPO

14

• NEPO architecture is similar to that of NEP, but now every
processor interacts with its own matrix of agents.

• The matrix of agents 𝐴𝐴 = 𝐴𝐴𝑖𝑖 𝑖𝑖=1
𝑁𝑁 is updated by using a

vectorial function 𝐹𝐹 = 𝐹𝐹1,𝐹𝐹2, … ,𝐹𝐹𝑁𝑁 . Here 𝐹𝐹𝑖𝑖 acts over
the words currently placed at a given node, updating the
single agent 𝐴𝐴𝑖𝑖 if necessary.

• Communication steps in the network are now governed
by the matrices of agents (one for each processor).

 14

What’s new?

2. Optimization problems: NEPO

15

Join two networks sequentially [3]

1. Consider a first NEPO which is responsible of approximating, even
generating, all the possible candidates that solve some instance of
a given problem.

2. Construct a second NEPO which is able to find an optimal solution
between the candidates.

The data met in the output node of the first network will be
transferred to the input node of the second one.

15

General idea to solve optimization problems

[3] J.R. Sánchez Couso, S. Gómez Canaval, D. Batard Lorenzo, How to search optimal solutions in big spaces with networks of bio-
inspired processors, in:Advances in Computational Intelligence, LNCS,vol. 9094, Springer International Publishing, 2015, pp. 29–39.

2. Optimization problems: NEPO

16

Let 𝒜𝒜 be a given fixed class of matrices. An evolutionary
processor for optimization (EPO) over an alphabet 𝑉𝑉 is a
triple 𝑀𝑀,𝛼𝛼,𝐴𝐴 , where

• 𝑀𝑀 is a set of either substitution, or insertion, or deletion
rules over 𝑉𝑉 (i.e. 𝑎𝑎 → 𝑏𝑏,  𝜀𝜀 → 𝑎𝑎, 𝑎𝑎 → 𝜀𝜀,  with 𝑎𝑎, 𝑏𝑏 ∈ 𝑉𝑉).

• 𝛼𝛼 ∈ {𝑙𝑙,∗, 𝑟𝑟} is the action mode of the rules: left side, any
place, right side.

• 𝐴𝐴 ∈ 𝒜𝒜 is a matrix representing a set of agents.

16

Formal definitions - EPO

2. Optimization problems: NEPO

17

A network of evolutionary processors for optimization (NEPO)
over 𝒜𝒜 is a 7-tuple Γ𝒜𝒜 = (𝑉𝑉,𝑈𝑈,𝐺𝐺,𝑅𝑅,𝐹𝐹, 𝐼𝐼𝐼𝐼,𝑂𝑂𝑂𝑂𝑂𝑂), where

• 𝑉𝑉 and 𝑈𝑈 are the input and the network alphabets, 𝑉𝑉 ⊆ 𝑈𝑈.

• 𝐺𝐺 = 𝑋𝑋𝐺𝐺 ,𝐸𝐸𝐺𝐺 is the underlying graph of the network.

• 𝑅𝑅:𝑋𝑋𝐺𝐺 ⟶ 𝐸𝐸𝐸𝐸𝑂𝑂𝑈𝑈 associates each node 𝑥𝑥 ∈ 𝑋𝑋𝐺𝐺 with the EPO
𝑅𝑅 𝑥𝑥 = 𝑀𝑀𝑥𝑥,𝛼𝛼𝑥𝑥 ,𝐴𝐴𝑥𝑥 over 𝑈𝑈, with 𝐴𝐴𝑥𝑥 ∈ 𝒜𝒜.

• 𝐹𝐹: 2𝑈𝑈∗ ⟶ 𝒜𝒜 is the fitness function for optimization.

• 𝐼𝐼𝐼𝐼,𝑂𝑂𝑂𝑂𝑂𝑂 ∈ 𝑋𝑋𝐺𝐺 are the input and output nodes of Γ𝒜𝒜.

17

Formal definitions - NEPO

2. Optimization problems: NEPO

18

A configuration of a NEPO Γ is a mapping

𝐶𝐶:𝑋𝑋𝐺𝐺 ⟶ 2𝑈𝑈∗

Initial configuration of Γ,

𝐶𝐶0 𝑥𝑥 = 𝑤𝑤𝑖𝑖1
𝑥𝑥 , … ,𝑤𝑤𝑖𝑖𝑠𝑠

𝑥𝑥 ,    ∀𝑥𝑥 ∈ 𝑋𝑋𝐺𝐺 − { 𝑂𝑂𝑂𝑂𝑂𝑂 }

‒ Eventually it could be 𝐶𝐶0 𝑥𝑥 = ∅.
‒ The input node 𝐼𝐼𝐼𝐼 of Γ might lack of relevance.

 18

NEPO dynamics

2. Optimization problems: NEPO

19

Configuration changes
• Evolutionary step: Each component 𝐶𝐶 𝑥𝑥 is changed in accordance

with the set of evolutionary rules 𝑀𝑀𝑥𝑥 in 𝑅𝑅(𝑥𝑥), and the way of
applying these rules 𝛼𝛼𝑥𝑥.

• Communication step: Each node processor 𝑥𝑥 ∈ 𝑋𝑋𝐺𝐺 sends a copy of
its eligible words to all nodes connected to 𝑥𝑥. The eligible words are
determined from the matrix 𝐴𝐴𝑥𝑥 which is dynamically updated, if
necessary, in accordance with the fitness function 𝐹𝐹. The processor
𝑥𝑥 receives all the words sent by any node processor connected with
𝑥𝑥, provided these words are eligible in their respective nodes.

19

NEPO dynamics

2. Optimization problems: NEPO

20

𝐶𝐶 ⇒ 𝐶𝐶′ if and only if 𝐶𝐶′ 𝑥𝑥 = 𝑀𝑀𝑥𝑥 𝐶𝐶 𝑥𝑥 ∀𝑥𝑥 ∈ 𝑋𝑋𝐺𝐺

𝐶𝐶 ⊢ 𝐶𝐶′ if and only if

𝐶𝐶′ 𝑥𝑥 = 𝐶𝐶 𝑥𝑥 − 𝜋𝜋 𝐴𝐴𝑥𝑥 ⋃ {𝑧𝑧 ∈ 𝐶𝐶 𝑦𝑦  :  𝑧𝑧 ∈ 𝜋𝜋 𝐴𝐴𝑦𝑦 }𝑥𝑥,𝑦𝑦 ∈𝐸𝐸𝐺𝐺

– 𝜋𝜋(𝐴𝐴𝑦𝑦), set of eligible words of node 𝑦𝑦.
– 𝐴𝐴𝑦𝑦 = 𝐹𝐹(𝐶𝐶 𝑦𝑦), best matrix of agents coming from words at node 𝑦𝑦.

20

NEPO dynamics

Evolutionary step

Communication step

2. Optimization problems: NEPO

21

The computation of a NEPO Γ on a node 𝑥𝑥 is

𝐶𝐶0 𝑥𝑥 ,𝐶𝐶1 𝑥𝑥 ,𝐶𝐶2 𝑥𝑥 , …

by alternating evolutionary & communication steps,

𝐶𝐶2𝑖𝑖 𝑥𝑥 ⇒ 𝐶𝐶2𝑖𝑖+1 𝑥𝑥 & 𝐶𝐶2𝑖𝑖+1 𝑥𝑥 ⊢ 𝐶𝐶2𝑖𝑖+2(𝑥𝑥) for 𝑖𝑖 ≥ 0.

The computation halts if no further step is possible.

 21

NEPO dynamics

2. Optimization problems: NEPO

22

22

NEPO algorithm for single solution

23

Example: 𝟎𝟎/𝟏𝟏 Knapsack problem

3. Example: 0/1 Knapsack problem

24

“Given a knapsack of capacity 𝐾𝐾 and a set ℰ
of 𝐼𝐼 elements, where each element has a
weight and a profit, choose a subset of 𝑚𝑚
elements of ℰ such that its corresponding
profit sum is maximized without having the
weight sum to exceed the capacity 𝐾𝐾”

24

Problem statement

3. Example: 0/1 Knapsack problem

25

Let 𝐾𝐾 > 0 and consider the parameters

ℰ = {𝑒𝑒1, 𝑒𝑒2, … , 𝑒𝑒𝑛𝑛} with weight 𝑒𝑒𝑖𝑖 = 𝑤𝑤𝑖𝑖 and profit 𝑒𝑒𝑖𝑖 = 𝑝𝑝𝑖𝑖 .

Construct a NEPO Γ = (𝑉𝑉,𝑈𝑈,𝐺𝐺,𝑅𝑅,𝐹𝐹, 𝐼𝐼𝐼𝐼,𝑂𝑂𝑂𝑂𝑂𝑂) as follows:

• 𝑉𝑉 = 𝑒𝑒1, 𝑒𝑒2, … , 𝑒𝑒𝑛𝑛

• 𝑈𝑈 = 𝑉𝑉 ∪ {𝑒𝑒1′ , 𝑒𝑒2′ , … , 𝑒𝑒𝑛𝑛′ , 𝑒𝑒1′′, 𝑒𝑒2′′, … , 𝑒𝑒𝑛𝑛′′}

• 𝑋𝑋𝐺𝐺 = 𝐼𝐼𝐼𝐼,𝑍𝑍,𝑌𝑌,𝑂𝑂𝑂𝑂𝑂𝑂,𝑋𝑋1, … ,𝑋𝑋𝑛𝑛

25

NEPO as optimization problem solver

3. Example: 0/1 Knapsack problem

26

Underlying graph 𝑋𝑋𝐺𝐺 for the 0/1 Knapsack problem

26

NEPO as optimization problem solver

3. Example: 0/1 Knapsack problem

27

Valuation function (base for the fitness function)

 𝜙𝜙 :𝑈𝑈∗ ⟶ ℤ,

𝜙𝜙 𝑒𝑒𝑖𝑖 = 0 , 𝜙𝜙 𝑒𝑒𝑖𝑖′ = 𝑤𝑤𝑖𝑖 , 𝜙𝜙 𝑒𝑒𝑖𝑖′′ = 𝑝𝑝𝑖𝑖 , 1 ≤ 𝑖𝑖 ≤ 𝐼𝐼,

𝜙𝜙 𝑠𝑠 = �𝜙𝜙 𝑠𝑠𝑗𝑗
𝑗𝑗

,       𝑠𝑠 = 𝑠𝑠1𝑠𝑠2 … 𝑠𝑠𝑘𝑘 ,     𝑠𝑠𝑗𝑗 ∈ 𝑈𝑈.

𝜙𝜙 is invariant under anagrams

 27

NEPO as optimization problem solver

3. Example: 0/1 Knapsack problem

28

Matrix class 𝒜𝒜 degenerates into a 3 component vector,

𝐴𝐴𝑥𝑥 = (𝑎𝑎𝑥𝑥,1,𝑎𝑎𝑥𝑥,2, 𝑎𝑎𝑥𝑥,3), ∀𝑥𝑥 ∈ 𝑋𝑋𝐺𝐺.

– 𝑎𝑎𝑥𝑥,1 ∈ 0, 1 (in the multiset sense).

– 𝑎𝑎𝑥𝑥,2, 𝑎𝑎𝑥𝑥,3 ∈ ℤ.

Initially, 𝐴𝐴𝑥𝑥 = (0, 0,𝐾𝐾), ∀𝑥𝑥 ∈ 𝑋𝑋𝐺𝐺.

28

NEPO as optimization problem solver

3. Example: 0/1 Knapsack problem

29

Fitness function
𝐹𝐹: 2𝑈𝑈∗ ⟶ 𝒜𝒜

For clarity, 𝐹𝐹 is defined as a piecewise function,
depending on what node 𝑥𝑥 ∈ 𝑋𝑋𝐺𝐺 it acts:

𝐹𝐹 𝑠𝑠 = � 𝐹𝐹1(𝑠𝑠) if 𝑥𝑥 ∈ 𝑋𝑋𝐺𝐺 − 𝑍𝑍,𝑌𝑌,𝑂𝑂𝑂𝑂𝑂𝑂 ,
 𝐹𝐹2(𝑠𝑠) otherwise.

29

NEPO as optimization problem solver

3. Example: 0/1 Knapsack problem

30

𝟏𝟏. For 𝑠𝑠 ∈ 𝐶𝐶(𝑥𝑥), 𝑥𝑥 ∉ 𝑍𝑍,𝑌𝑌,𝑂𝑂𝑂𝑂𝑂𝑂 ,

 𝐹𝐹1 𝑠𝑠 = � 1 if 𝜙𝜙 𝑠𝑠 ≤ 𝐾𝐾,
 0 otherwise,

 𝐴𝐴𝑥𝑥 = 𝐹𝐹1 𝑠𝑠 , 0,𝐾𝐾 .

30

𝟐𝟐. For 𝑠𝑠 ∈ 𝐶𝐶(𝑍𝑍),
 𝐹𝐹2 𝑠𝑠 = 𝜙𝜙 𝑠𝑠 ,
 𝐴𝐴𝑍𝑍 = (1, max 𝐹𝐹2 𝑠𝑠 ,𝑇𝑇 ,𝐾𝐾),
 𝑇𝑇 ≥ 0 is the last value found in 𝑎𝑎𝑥𝑥,2.

 𝟑𝟑. For 𝑠𝑠 ∈ 𝐶𝐶(𝑌𝑌),

 𝐹𝐹2 𝑠𝑠 = � 1 if 𝜙𝜙 𝑠𝑠 = 𝑇𝑇,
 0 otherwise,

 𝐴𝐴𝑌𝑌 = 𝐹𝐹2 𝑠𝑠 ,𝑇𝑇,𝐾𝐾 .

Note that 𝐴𝐴𝑥𝑥 is updated after
applying an evolutionary rule
to the word 𝑠𝑠.

NEPO as optimization problem solver

3. Example: 0/1 Knapsack problem

31 31

NEPO as optimization problem solver

Node 𝑥𝑥 Rules in 𝑀𝑀𝑥𝑥 Action mode 𝛼𝛼𝑥𝑥 𝐴𝐴𝑥𝑥

𝐼𝐼𝐼𝐼 ∅ ∅ (1, 0,𝐾𝐾)

𝑋𝑋𝑖𝑖 𝑒𝑒𝑖𝑖 → 𝑒𝑒𝑖𝑖′ any place (𝐹𝐹1 ⋅ , 0,𝐾𝐾)

𝑍𝑍 𝑒𝑒𝑖𝑖′ → 𝑒𝑒𝑖𝑖′′,  ∀𝑖𝑖, 1 ≤ 𝑖𝑖 ≤ 𝐼𝐼 any place (1, max 𝐹𝐹2 ⋅ ,𝑇𝑇 ,𝐾𝐾)

𝑌𝑌 𝑒𝑒𝑖𝑖 → 𝜀𝜀,  ∀𝑖𝑖, 1 ≤ 𝑖𝑖 ≤ 𝐼𝐼 left (𝐹𝐹2 ⋅ ,𝑇𝑇,𝐾𝐾)

𝑂𝑂𝑂𝑂𝑂𝑂 ∅ ∅ (−,−,−)

The mapping 𝑅𝑅 𝑥𝑥 for the NEPO Γ

3. Example: 0/1 Knapsack problem

32

• Notice that there is an abuse of notation on 𝐹𝐹𝑖𝑖(⋅) since it is
defined on words instead of a set of words, but this is for not
complicating the writing only.

• Γ hasn’t any type of input filters on the nodes, therefore any
copy of a word sent out by a processor is never lost.

• Once a processor has transmitted all of the copies of a given
word, this word is removed from the processor in question.

• As a consequence, the management of the subset 𝜋𝜋(𝐴𝐴𝑥𝑥) of
eligible words at node 𝑥𝑥 is rather simple in this network.

 32

Considerations about NEPO Γ

3. Example: 0/1 Knapsack problem

33

Te
ch

ni
ca

l R
es

ul
ts

3. Example: 0/1 Knapsack problem

34

Te
ch

ni
ca

l R
es

ul
ts

3. Example: 0/1 Knapsack problem

35

• NEPO models require massively scalable platforms to implement SW
that works reasonably.

• For this motive, it is used the diamond subgraph with nodes 𝑋𝑋𝑖𝑖 in
the underlying graph. This distribution seems to be more adequate
to reallocate units of parellel computing in real machines.

• However, NEPO models may have a significant drawback that is the
intrinsic complexity for communication steps. Normally, these steps
may be more laborious to establish than other types of NEP. Clearly,
this is not the case for evolutionary steps.

35

Final remarks

3. Example: 0/1 Knapsack problem

36 36

Preliminary experimental results

NPEPE [4] : High scalable engine designed to run
polarized NEP models in distributed and parallel
computational platforms.

NPEPE engine follows the BSP (Bulk Synchronous Parallel) model
implemented by Giraph (open source version of Google Pregel).

[4] S. Gómez-Canaval, B. Ordozgoiti, A. Mozo, NPEPE: massive natural computing engine for optimally solving NP-complete
problems in big data scenarios, in:New Trends in Databases and Information Systems, Communications in Computer and Information
Science, vol. 539, Springer, 2015, pp. 207–217.

3. Example: 0/1 Knapsack problem

37

NPEPE : How it works
• Every computational component (similar to a processor) is associated

with a node of some graph.
• A NPEPE computation is a sequence of iterations called supersteps.
• Each node has a user-defined computing function that establishes its

behavior. All these functions are invoked simultaneously during a
superstep.

• Any node can send messages and exchange values with the others.
• A global procedure checks if all the computing functions have ended.

37

Preliminary experimental results

3. Example: 0/1 Knapsack problem

38

Testing Machine Setup
– Intel Core i7-3770 (3.4 GHz)
– 8 GB RAM, 1 TB HDD
– OS Ubuntu 14.04
– Apache Giraph 1.1.0
– Hadoop Framework 2.6
– Java 1.8

Small 𝟎𝟎/𝟏𝟏 Knapsack test

Objects ℰ = 10
Capacity 𝐾𝐾 = 10
Weights 𝑊𝑊 = 1, 1, 5, 6, 7, 6, 4, 7, 8, 1 , Profits 𝐸𝐸 = (10, 10, 2, 3, 2, 3, 2, 3, 10, 10)

 38

Preliminary experimental results

3. Example: 0/1 Knapsack problem

39

Some instances
• Objects: from 10 to 200 (+25)
• Capacity: always 50
• Random weights and profits
• Weights between 1 and 50

 Linear behavior in supersteps.
 Real time apparently polynomial.
 Simulated only, NOT run within a

genuine parallel environment.

39

Preliminary experimental results

40

Thanks for your attention !

	�Networks of Evolutionary Processors for Optimization
	Número de diapositiva 2
	
	1. A brief reminder of NBP
	1. A brief reminder of NBP
	NBP Family
	Número de diapositiva 7
	1. A brief reminder of NBP
	1. A brief reminder of NBP
	
	2. Optimization problems: NEPO
	NEP Family
	2. Optimization problems: NEPO
	2. Optimization problems: NEPO
	2. Optimization problems: NEPO
	2. Optimization problems: NEPO
	2. Optimization problems: NEPO
	2. Optimization problems: NEPO
	2. Optimization problems: NEPO
	2. Optimization problems: NEPO
	2. Optimization problems: NEPO
	2. Optimization problems: NEPO
	
	3. Example: 0/1 Knapsack problem
	3. Example: 0/1 Knapsack problem
	3. Example: 0/1 Knapsack problem
	3. Example: 0/1 Knapsack problem
	3. Example: 0/1 Knapsack problem
	3. Example: 0/1 Knapsack problem
	3. Example: 0/1 Knapsack problem
	3. Example: 0/1 Knapsack problem
	3. Example: 0/1 Knapsack problem
	3. Example: 0/1 Knapsack problem
	3. Example: 0/1 Knapsack problem
	3. Example: 0/1 Knapsack problem
	3. Example: 0/1 Knapsack problem
	3. Example: 0/1 Knapsack problem
	3. Example: 0/1 Knapsack problem
	3. Example: 0/1 Knapsack problem
	

