New techniques to address the problem P vs. NP

Mario J. Pérez Jiménez A. Riscos-Núñez

Research Group on Natural Computing Department of Computer Science and Artificial Intelligence Universidad de Sevilla

3rd Int. School on Biomolecular and Biocellular Computing June 28-30, Valencia

You may say I'm a dreamer ...

- P vs NP
- Complexity Theory in Membrane Computing
- Computational complexity frameworkBorderlines of tractability

- P vs NP
- Complexity Theory in Membrane Computing
- Computational complexity frameworkBorderlines of tractability

3 Final Comments

Goal:

 Unconventional approaches/tools to attack the P versus NP problem are given by using Membrane Computing.

Computability (1931)

- Define the informal idea of mechanical/algorithmic problems resolution in a rigorous way.
- Which problems are computable in a (universal) model?

Complexity (1970)

- Provide bounds on the amount of resources necessary for every mechanical procedure (algorithm) that solves a given problem.
- Which (computable) problems are efficiently solvable?

- Finding solutions versus checking the correctness of solutions.
- Proofs versus verifying their correctness.
- This is essentially the central problem of Computational Complexity theory

It is widely believed that:

- To solve a problem is **harder** than to check the correctness of a solution
- $\mathbf{P} \neq \mathbf{NP}$.

Classical approach (1970):

- $\mathbf{P} \neq \mathbf{NP}$.
 - Find <u>an</u> NP-complete problem such that it does **not** belong to the class **P**.

$\bullet \mathbf{P} = \mathbf{NP}.$

• Find <u>an</u> NP-complete problem such that it belongs to the class P.

Classical approach (1970):

- $\mathbf{P} \neq \mathbf{NP}$.
 - Find <u>an</u> NP-complete problem such that it does **not** belong to the class **P**.
- $\bullet \mathbf{P} = \mathbf{NP}.$
 - Find <u>an</u> NP-complete problem such that it belongs to the class P.

Complexity Theory in Membrane Computing

Unconventional approaches/tools to attack the **P versus NP problem** are given by using **Membrane Computing**.

- Polynomial complexity classes associated with (cell–like and tissue–like)
 P systems are presented.
- A notion of acceptance must be defined in the new framework (<u>different</u> than the classical one for nondeterministic Turing machines)

Nondeterministic Turing machines

Membrane systems

10/48

- Computational complexity theory deals with decision problems which are problems that require a "yes" or "no" answer.
- In real-life, many abstract problems are combinatorial optimization problems not decision problems.
- * Every decision problem has associated a language in a natural way.
- * The solvability of decision problems is defined through the **recognition** of the languages associated with them.

- Computational complexity theory deals with decision problems which are problems that require a "yes" or "no" answer.
- In real-life, many abstract problems are combinatorial optimization problems not decision problems.
- ★ Every decision problem has associated a language in a natural way.
- * The solvability of decision problems is defined through the **recognition** of the languages associated with them.

- Computational complexity theory deals with decision problems which are problems that require a "yes" or "no" answer.
- In real-life, many abstract problems are combinatorial optimization problems not decision problems.
- ★ Every decision problem has associated a language in a natural way.
- * The solvability of decision problems is defined through the **recognition** of the languages associated with them.

- Computational complexity theory deals with decision problems which are problems that require a "yes" or "no" answer.
- In real-life, many abstract problems are combinatorial optimization problems not decision problems.
- ★ Every decision problem has associated a language in a natural way.
- The solvability of decision problems is defined through the recognition of the languages associated with them.

A *recognizer P system* is a P system with input and external output such that:

- Yes, No
 - for tissue, *Yes*, $No \in$ initial multisets (but not in \mathcal{E} !)
- all computations halt.
- for every computation, one symbol <u>Yes</u> or one symbol <u>No</u> (but not both) is sent out (and in the last step of the computation).
 - Accepting/rejecting computations
- The sets NAM, AM(-ne) and AM(+ne).
 The sets TC, TDC, TSC, and TDC(k), TSC(k), for each k ≥ 1.

Let \mathcal{R} be a class of recognizer P systems. A decision problem $X = (I_X, \theta_X)$ is solvable in polynomial time by a family $F_X = (\Pi(n))_{n \in \mathbb{N}^+}$, of \mathcal{R} , if

• *F_X* is polynomially uniform by Turing machines.

Let \mathcal{R} be a class of recognizer P systems. A decision problem $X = (I_X, \theta_X)$ is solvable in polynomial time by a family $F_X = (\Pi(n))_{n \in \mathbb{N}^+}$, of \mathcal{R} , if

- *F_X* is polynomially uniform by Turing machines.
- There exists a pair (*cod*, *s*) of pol-time computable functions such that for every $u \in I_X$ we have $cod(u) \in I_{\Pi(s(u))}$, for every $n \in \mathbb{N}$ we have $s^{-1}(n)$ is a finite set, and
 - *F_X* is polynomially bounded with regard to (*X*, *cod*, *s*).
 - F_X is sound and complete, with regard to (X, cod, s).

Let \mathcal{R} be a class of recognizer P systems. A decision problem $X = (I_X, \theta_X)$ is solvable in polynomial time by a family $F_X = (\Pi(n))_{n \in \mathbb{N}^+}$, of \mathcal{R} , if

- *F_X* is polynomially uniform by Turing machines.
- There exists a pair (*cod*, *s*) of pol-time computable functions such that for every $u \in I_X$ we have $cod(u) \in I_{\Pi(s(u))}$, for every $n \in \mathbb{N}$ we have $s^{-1}(n)$ is a finite set, and
 - F_X is polynomially bounded with regard to (X, cod, s).
 - F_X is sound and complete, with regard to (X, cod, s).

We denote this by $X \in \mathsf{PMC}_{\mathcal{R}}$.

Closed under complement and polynomial-time reductions

Solvability of a decision problem

A. Riscos-Núñez (Univ. Sevilla)

P vs. NP in MC

Efficiency of a membrane systems class

• Efficiency: Capability to solve NP-complete problems in polynomial time.

- NP \cup co-NP \subseteq PMC_R.
- Non-Efficiency: $P = PMC_{\mathcal{R}}$.

Frontiers of the efficiency:

- M_1 efficient.
- *M*₂ non efficient.
- $M_2 \subseteq M_1$: each solution *S* of a problem *X* in M_2 is also a solution in M_1 .

Passing from M_2 to M_1 amounts to passing from non efficiency to efficiency.

- Efficiency: Capability to solve NP-complete problems in polynomial time.
 - NP \cup co-NP \subseteq PMC_R.
- Non-Efficiency: $P = PMC_{\mathcal{R}}$.

Frontiers of the efficiency:

- M₁ efficient.
- M₂ non efficient.
- $M_2 \subseteq M_1$: each solution S of a problem X in M_2 is also a solution in M_1 .

Passing from M_2 to M_1 amounts to passing from non efficiency to efficiency.

- Efficiency: Capability to solve NP-complete problems in polynomial time.
 - NP \cup co-NP \subseteq PMC_R.
- Non-Efficiency: $P = PMC_{\mathcal{R}}$.

Frontiers of the efficiency:

- M₁ efficient.
- M₂ non efficient.
- $M_2 \subseteq M_1$: each solution S of a problem X in M_2 is also a solution in M_1 .

Passing from M_2 to M_1 amounts to passing from non efficiency to efficiency.

Managing frontiers of the efficiency

Attacking the P versus NP problem

- Finding an **NP**-complete problem efficiently solvable in *M*₂.
 - Translating a polynomial time solution of an **NP**-complete problem in M_1 , to a polynomial time solution in M_2 .

• Finding an **NP**-complete problem not polynomial time solvable in M₂.

Introduction

- P vs NP
- Complexity Theory in Membrane Computing

Computational complexity frameworkBorderlines of tractability

3 Final Comments

RG

• Proposition 1 (Sevilla theorem, 2004)

Every DTM working in polynomial time can be simulated in polynomial time by a family of recognizer basic P systems.

• Proposition 2 (Milano theorem, 2000)

If a decision problem is solvable in polynomial time by a family of recognizer basic P systems with input membrane, then there exists a DTM solving it in polynomial time.

• Theorem: $P = PMC_T$ (Sevilla team, 2004).

• Corollary: $P \neq NP$ if and only if every, or at least one, NP–complete problem is not in PMC $_{T}$.

• Proposition 1 (Sevilla theorem, 2004)

Every DTM working in polynomial time can be simulated in polynomial time by a family of recognizer basic P systems.

• Proposition 2 (Milano theorem, 2000)

If a decision problem is solvable in polynomial time by a family of recognizer basic P systems with input membrane, then there exists a DTM solving it in polynomial time.

• Theorem: $P = PMC_T$ (Sevilla team, 2004).

 Corollary: P ≠ NP if and only if every, or at least one, NP–complete problem is not in PMC_T.

• Proposition 1 (Sevilla theorem, 2004)

Every DTM working in polynomial time can be simulated in polynomial time by a family of recognizer basic P systems.

• Proposition 2 (Milano theorem, 2000)

If a decision problem is solvable in polynomial time by a family of recognizer basic P systems with input membrane, then there exists a DTM solving it in polynomial time.

• Theorem: $P = PMC_T$ (Sevilla team, 2004).

 Corollary: P ≠ NP if and only if every, or at least one, NP–complete problem is not in PMC_T.

• **Proposition 3:** A deterministic P system with active membranes but without membrane division can be simulated by a DTM with a polynomial slowdown.

Theorem: $P = PMC_{\mathcal{NAM}}$.

• Efficient solutions to **NP**–complete problems in $\mathcal{AM}(-ne)$:

• $\mathsf{NP} \cup \mathsf{co-NP} \subseteq \mathsf{PMC}_{\mathcal{AM}(-ne)}$ (Sevilla team 2003, A. Alhazov, C. Martín and L. Pan, 2004).

A borderline of the efficiency

• (elementary) division rules in $\mathcal{AM}(-ne)$

• **Proposition 3:** A deterministic P system with active membranes but without membrane division can be simulated by a DTM with a polynomial slowdown.

Theorem: $P = PMC_{\mathcal{NAM}}$.

- Efficient solutions to **NP**–complete problems in $\mathcal{AM}(-ne)$:
 - $\mathsf{NP} \cup \mathsf{co-NP} \subseteq \mathsf{PMC}_{\mathcal{AM}(-\mathit{ne})}$ (Sevilla team 2003, A. Alhazov, C. Martín and L. Pan, 2004).

A borderline of the efficiency

• (elementary) division rules in $\mathcal{AM}(-ne)$

• **Proposition 3:** A deterministic P system with active membranes but without membrane division can be simulated by a DTM with a polynomial slowdown.

Theorem: $P = PMC_{\mathcal{NAM}}$.

- Efficient solutions to **NP**–complete problems in $\mathcal{AM}(-ne)$:
 - $\mathsf{NP} \cup \mathsf{co-NP} \subseteq \mathsf{PMC}_{\mathcal{AM}(-\mathit{ne})}$ (Sevilla team 2003, A. Alhazov, C. Martín and L. Pan, 2004).

A borderline of the efficiency

• (elementary) division rules in $\mathcal{AM}(-ne)$

• Characterization: $PSPACE = PMC_{AM(+ne)}$

(A.E. Porreca, G. Mauri and C. Zandron, 2006, 2008).

• Conclusion: \mathcal{AM} is too powerful from the complexity point of view.

Polarizationless P systems with active membranes

•
$$\Pi = (\Gamma, \Sigma, H, \mu, \mathcal{M}_1, \dots, \mathcal{M}_q, \mathcal{R}, i_{in}, i_{out})$$
:

- (a) $[a \rightarrow u]_h$ (object evolution rules).
- (b) $a[]_h \rightarrow [b]_h$ (send-in communication rules).
- (c) $[a]_h \rightarrow []_h b$ (send-out communication rules).
- (d) $[a]_h \rightarrow b$ (dissolution rules).
- (e) $[a]_h \rightarrow [b]_h [c]_h$ (division rules for elementary membranes).
- (f) $[[]_{h_1} []_{h_2}]_h \rightarrow [[]_{h_1}]_h [[]_{h_2}]_h$ (division rules for non-elementary membranes).

• The sets \mathcal{NAM}^0 , $\mathcal{AM}^0(\alpha, \beta)$, where $\alpha \in \{-d, +d\}$ and $\beta \in \{-ne, +ne\}$.

At the beginning of 2005, Gh. Păun (problem **F** from ¹) wrote:

My favorite question (related to complexity aspects in *P* systems with active membranes and with electrical charges) is that about the number of polarizations. Can the polarizations be completely avoided? The feeling is that this is not possible – and such a result would be rather sound: passing from no polarization to two polarizations amounts to passing from non–efficiency to efficiency.

The so-called Păun's conjecture can be formally formulated:

 $\mathbf{P} = \mathbf{PMC}_{\mathcal{AM}^0(+d,-ne)}$

A. Riscos-Núñez (Univ. Sevilla)

^IGh. Păun: Further twenty six open problems in membrane computing. *Third Brainstorming Week on Membrane Computing* (M.A. Gutiérrez et al. eds.), Fénix Editora, Sevilla, 2005, pp. 249–262.

AFFIRMATIVE

• Non efficiency of $\mathcal{AM}^0(-d, +ne)$

Theorem: $\mathbf{P} = \mathbf{PMC}_{\mathcal{AM}^0(-d,+ne)}$ (Sevilla team, 2006).

• The notion of dependency graph.

NEGATIVE

• Efficiency of $\mathcal{AM}^0(+d,+ne)$:

Theorem: PSPACE \subseteq **PMC**_{*A*M⁰(+*d*,+*ne*)}

(A. Alhazov, Pérez-Jiménez, 2007).

A borderline of the efficiency

• dissolution rules in $\mathcal{AM}^0(+ne)$.

AFFIRMATIVE

• Non efficiency of $\mathcal{AM}^0(-d, +ne)$

Theorem: $\mathbf{P} = \mathbf{PMC}_{\mathcal{AM}^0(-d,+ne)}$ (Sevilla team, 2006).

• The notion of dependency graph.

NEGATIVE

• Efficiency of \mathcal{AM}^0 (+d, +ne):

Theorem: **PSPACE** \subseteq **PMC**_{*AM*⁰(+*d*,+*ne*)}

(A. Alhazov, Pérez-Jiménez, 2007).

A borderline of the efficiency

• dissolution rules in $\mathcal{AM}^0(+ne)$.

AFFIRMATIVE

• Non efficiency of $\mathcal{AM}^0(-d, +ne)$

Theorem: $\mathbf{P} = \mathbf{PMC}_{\mathcal{AM}^0(-d,+ne)}$ (Sevilla team, 2006).

• The notion of dependency graph.

NEGATIVE

• Efficiency of \mathcal{AM}^0 (+d, +ne):

Theorem: **PSPACE** \subseteq **PMC**_{*AM*⁰(+*d*,+*ne*)}

(A. Alhazov, Pérez-Jiménez, 2007).

A borderline of the efficiency

• dissolution rules in $\mathcal{AM}^0(+ne)$.

On efficiency of polarizationless P systems with active membranes

A. Riscos-Núñez (Univ. Sevilla)

Only communication P = PMC_{TC} • tissue P systems with only communication rules can be efficiently simulated by basic transition P systems

IMCS

RGNC

Borderlines of tractability (rules length)

AE Porreca, N Murphy, MJ Pérez. An Optimal Frontier of the Efficiency of Tissue P Systems with Cell Division. 10thBWMC 2012 (vol.II), 141-166.

R Gutiérrez, MJ Pérez, M Rius. Characterizing tractability by tissue-like P systems. LNCS 5957 (2010), 289-300.

Borderlines of tractability (rules length)

Separation

***NP** \cup **co**-NP \subseteq **PMC**_{$\mathcal{TSC}(3)$} $\star \mathbf{P} = \mathbf{PMC}_{\mathcal{TSC}(2)}$

MJ Pérez, P. Sosík. Improving the efficiency of tissue P systems with cell separation. 10thBWMC 2012 (vol.II), 105-140.

L Pan, MJ Pérez, A Riscos, M Rius. **New frontiers of the efficiency in tissue P systems**. Pre-proceedings ACMC 2012, pp. 61-73.

- Tissue-like P systems: $\Pi = (\Gamma, \Sigma, \mathcal{E}, \mathcal{M}_1, \dots, \mathcal{M}_q, \mathcal{R}, i_{in}, i_{out})$
 - The objects of \mathcal{E} initially appear located in the environment in an arbitrary number of copies.
- Tissue-like P systems without environment: $\mathcal{E} = \emptyset$.
- The classes $\widehat{\mathcal{TC}}$, $\widehat{\mathcal{TDC}}$, $\widehat{\mathcal{TSC}}$, and $\widehat{\mathcal{TC}(k)}$, $\widehat{\mathcal{TDC}(k)}$, $\widehat{\mathcal{TSC}(k)}$, for $k \ge 1$.

Theorem

$$\forall k \in \mathbb{N} \ \left(\mathsf{PMC}_{\mathcal{TDC}(k+1)} = \mathsf{PMC}_{\widehat{\mathcal{TDC}}(k+1)} \right)$$

MJ Pérez, A Riscos, M Rius, FJ Romero. A polynomial alternative to unbounded environment for tissue P systems with cell division. IJCM, 90 (4) (2013)

On Efficiency of tissue P systems without environment Division rules

• $\mathbf{P} = \mathbf{PMC}_{\widehat{\mathcal{TDC}}(1)}$. • $\mathbf{NP} \cup \mathbf{co} - \mathbf{NP} \subseteq \mathbf{PMC}_{\widehat{\mathcal{TDC}}(2)}$.

A borderline of the efficiency

• Length of communication rules in \widehat{TD} .

Borderlines of tractability (environment)

LF Macías, MJ Pérez, A Riscos, M Rius. The efficiency of tissue P systems with cell separation relies on the environment. Proceedings CMC 2012, pp. 277-290.

On Efficiency of tissue P systems without environment Separation rules

• $\mathbf{P} = \mathbf{PMC}_{\widehat{\mathcal{TSC}}(3)}$. • $\mathbf{NP} \cup \mathbf{co} - \mathbf{NP} \subseteq \mathbf{PMC}_{\mathcal{TSC}(3)}$.

A borderline of the efficiency

• Environment in TSC(3).

Introduction

- P vs NP
- Complexity Theory in Membrane Computing
- Computational complexity frameworkBorderlines of tractability

RG

Kind of rules:

- Division rules in *AM*.
- Division rules in *TC*.
- Dissolution rules in $\mathcal{AM}^0(+ne)$.

The length of communication rules:

- Passing from 1 to 2 in TD.
- Passing from 1 to 2 in $\widehat{\mathcal{TD}}$.
- Passing from 2 to 3 in TS.
- The environment:
 - In the framework TSC(3).

Kind of rules:

- Division rules in \mathcal{AM} .
- Division rules in *TC*.
- Dissolution rules in $\mathcal{AM}^0(+ne)$.
- The length of communication rules:
 - Passing from 1 to 2 in TD.
 - Passing from 1 to 2 in \overline{TD} .
 - Passing from 2 to 3 in TS.
- The environment:
 - In the framework TSC(3).

- Kind of rules:
 - Division rules in *AM*.
 - Division rules in *TC*.
 - Dissolution rules in $\mathcal{AM}^0(+ne)$.
- The length of communication rules:
 - Passing from 1 to 2 in TD.
 - Passing from 1 to 2 in \overline{TD} .
 - Passing from 2 to 3 in TS.
- The environment:
 - In the framework TSC(3).

- Kind of rules:
 - Division rules in *AM*.
 - Division rules in *TC*.
 - Dissolution rules in $\mathcal{AM}^0(+ne)$.
- The length of communication rules:
 - Passing from 1 to 2 in TD.
 - Passing from 1 to 2 in \overline{TD} .
 - Passing from 2 to 3 in TS.
- The environment:
 - In the framework TSC(3).

- $\mathbf{P} = \mathbf{PMC}_{\mathcal{TC}}$ (Sevilla team, 2009).
- $\mathbf{P} = \mathbf{PMC}_{\mathcal{TDC}(1)}$ (Sevilla team, 2010).
- $P = PMC_{TSC(2)}$ (L. Pan, Pérez-Jiménez, A. Riscos, M. Rius, 2012).
- NP \cup CO NP \subseteq PMC $_{\mathcal{TDC}(2)}$ (A. Porreca, N. Murphy, Pérez-Jiménez, 2012).
- $\mathsf{NP} \cup \mathsf{co} \mathsf{NP} \subseteq \mathsf{PMC}_{\mathcal{TSC}(3)}$ (P. Sosík, Pérez-Jiménez, 2012).

- division rules in the framework of \mathcal{TC} .
- length of communication rules in the framework of TD: passing trom 1 to 2 amounts to passing from non-efficiency to efficiency.
- length of communication rules in the framework of TS: passing tom 2 to 0 amounts to passing from non-efficiency to efficiency.

- $\mathbf{P} = \mathbf{PMC}_{\mathcal{TC}}$ (Sevilla team, 2009).
- $\mathbf{P} = \mathbf{PMC}_{\mathcal{TDC}(1)}$ (Sevilla team, 2010).
- $P = PMC_{TSC(2)}$ (L. Pan, Pérez-Jiménez, A. Riscos, M. Rius, 2012).
- NP \cup CO NP \subseteq PMC $_{TDC(2)}$ (A. Porreca, N. Murphy, Pérez-Jiménez, 2012).
- $NP \cup co NP \subseteq PMC_{TSC(3)}$ (P. Sosík, Pérez-Jiménez, 2012).

- division rules in the framework of TC.
- length of communication rules in the framework of TD: passing from 1 to 2 amounts to passing from non-efficiency to efficiency.
- length of communication rules in the framework of TS: passing train 2 to 3 amounts to passing from non-efficiency to efficiency.

- $\mathbf{P} = \mathbf{PMC}_{\mathcal{TC}}$ (Sevilla team, 2009).
- $\mathbf{P} = \mathbf{PMC}_{\mathcal{TDC}(1)}$ (Sevilla team, 2010).
- $P = PMC_{TSC(2)}$ (L. Pan, Pérez-Jiménez, A. Riscos, M. Rius, 2012).
- NP \cup CO NP \subseteq PMC $_{TDC(2)}$ (A. Porreca, N. Murphy, Pérez-Jiménez, 2012).
- $NP \cup co NP \subseteq PMC_{\mathcal{TSC}(3)}$ (P. Sosík, Pérez-Jiménez, 2012).

- division rules in the framework of TC.
- length of communication rules in the framework of TD: passing from 1 to 2 amounts to passing from non-efficiency to efficiency.
- In length of communication rules in the framework of TS: passing trom 2 to 3 amounts to passing from non-efficiency to efficiency.

- $\mathbf{P} = \mathbf{PMC}_{\mathcal{TC}}$ (Sevilla team, 2009).
- $\mathbf{P} = \mathbf{PMC}_{\mathcal{TDC}(1)}$ (Sevilla team, 2010).
- P = PMC_{TSC(2)} (L. Pan, Pérez-Jiménez, A. Riscos, M. Rius, 2012).
- NP \cup CO NP \subseteq PMC $_{TDC(2)}$ (A. Porreca, N. Murphy, Pérez-Jiménez, 2012).
- $NP \cup co NP \subseteq PMC_{\mathcal{TSC}(3)}$ (P. Sosík, Pérez-Jiménez, 2012).

- division rules in the framework of TC.
- length of communication rules in the framework of TD: passing from 1 to 2 amounts to passing from non-efficiency to efficiency.

 length of communication rules in the framework of TS: passing from 2 to 3 amounts to passing from non-efficiency to efficiency.

- $\mathbf{P} = \mathbf{PMC}_{\mathcal{TC}}$ (Sevilla team, 2009).
- $\mathbf{P} = \mathbf{PMC}_{\mathcal{TDC}(1)}$ (Sevilla team, 2010).
- $P = PMC_{TSC(2)}$ (L. Pan, Pérez-Jiménez, A. Riscos, M. Rius, 2012).
- NP \cup CO NP \subseteq PMC $_{TDC(2)}$ (A. Porreca, N. Murphy, Pérez-Jiménez, 2012).
- $NP \cup co NP \subseteq PMC_{\mathcal{TSC}(3)}$ (P. Sosík, Pérez-Jiménez, 2012).

- division rules in the framework of TC.
- length of communication rules in the framework of *TD*: passing from 1 to 2 amounts to passing from non-efficiency to efficiency.
- length of communication rules in the framework of TS: passing from 2 to 3 amounts to passing from non-efficiency to efficiency.

Final Comments (environment in tissue)

Division: No influence of the environment

$$\begin{array}{l} \star \mathsf{NP} \cup \mathsf{co}\text{-}\mathsf{NP} \subseteq \mathsf{PMC}_{\mathcal{TDC}(2)} = \mathsf{PMC}_{\widehat{\mathcal{TDC}}(2)} \\ \star \mathsf{P} = \mathsf{PMC}_{\mathcal{TDC}(1)} = \mathsf{PMC}_{\widehat{\mathcal{TDC}}(1)} \end{array}$$

Separation: Efficiency relies on the environment

Separation vs. Division

Thank you!

A. Riscos-Núñez (Univ. Sevilla)

P vs. NP in MC

ISBBC 2017 - Valencia 41 / 48

Strategies

- Algorithmic (Dependency graph)
- Simulation

Borderlines of tractability (environment) $\text{HAM-CYCLE} \in \text{PMC}_{\widehat{TD}(2)}$

A. Riscos-Núñez (Univ. Sevilla)

P vs. NP in MC

A. Riscos-Núñez (Univ. Sevilla)

P vs. NP in MC

HAM-CYCLE $\in \mathsf{PMC}_{\widehat{\mathcal{TDC}}(2)}$

$\mathbf{P} = \mathbf{PMC}_{\widehat{\mathcal{TSC}}} \text{ (Sketch of the proof)}$

- Key idea: only one computation is simulated
 - * sufficient because of confluence condition

Selection stage

- Loop over the (ordered) set of communication rules
 - apply maximally
- Loop over the (ordered) set of separation rules
 - apply if possible
 - cells with same label get unique tags (strings over 0's and 1's)
 - used cells are tracked to avoid incorrect application of separation rules

$\mathbf{P} = \mathbf{PMC}_{\widehat{\mathcal{TSC}}} \text{ (Sketch of the proof)}$

- Key idea: only one computation is simulated
 - * sufficient because of confluence condition

Selection stage

- Loop over the (ordered) set of communication rules
 - apply maximally
- Loop over the (ordered) set of separation rules
 - apply if possible

Execution stage

- Loop over the applied rules
 - update objects from RHS of communication rules
 - create cells (new tags) for separation rules, distributing objects

Pseudocode (Selection stage)

Input: A configuration C_t of Π at instant t

$$\begin{array}{l} \text{for } r \equiv (i, u/v, j) \in R_{\mathcal{C}} \quad (\text{ordered}) \quad \textbf{do} \\ \text{for each pair } (i, \sigma_i), (j, \sigma_j) \quad \text{of } \mathcal{C}'_t \quad (\text{ordered}) \quad \textbf{do} \\ n_r \leftarrow \text{max number of applicablications} \\ \text{if } n_r > 0 \quad \textbf{then} \\ \mathcal{C}'_t \leftarrow \mathcal{C}'_t \setminus n_r \cdot LHS(r, (i, \sigma_i), (j, \sigma_j)) \\ A \leftarrow A \cup \{(r, n_r, (i, \sigma_i), (j, \sigma_j))\} \\ B \leftarrow B \cup \{(i, \sigma_i), (j, \sigma_j)\} \end{array}$$

for
$$r \equiv [a]_i \rightarrow [\Gamma_0]_i [\Gamma_1]_i \in R_S$$
 (ordered) do
for each $(a, i, \sigma_i) \in C'_t$ (ordered), s.t. $(i, \sigma_i) \notin B$ do
 $C'_t \leftarrow C'_t \setminus \{(a, i, \sigma_i)\}$
 $A \leftarrow A \cup \{(r, 1, (i, \sigma_i))\}$
 $B \leftarrow B \cup \{(i, \sigma_i)\}$

Montrare Carquing

RGNC

Input: The output \mathcal{C}'_t and A of the selection stage

for each
$$(r, n_r, (i, \sigma_i), (j, \sigma_j)) \in A$$
 do
 $C'_t \leftarrow C'_t + n_r \cdot RHS(r, (i, \sigma_i), (j, \sigma_j))$

$$\begin{array}{l} \text{for each } (r,1,(i,\sigma_i)) \in A \text{ do} \\ \mathcal{C}'_t \leftarrow \mathcal{C}'_t + \{(\lambda,i,\sigma_i)/\sigma_i 0\} + \{(\lambda,i,\sigma_i 1)\} \\ \text{for each } (x,i,\sigma_i) \in \mathcal{C}'_t \text{ (ordered) do} \\ \text{if } x \in \Gamma_0 \text{ then } \mathcal{C}'_t \leftarrow \mathcal{C}'_t + \{(x,i,\sigma_i)/\sigma_i 0\} \\ \text{else } \mathcal{C}'_t \leftarrow \mathcal{C}'_t + \{(x,i,\sigma_i)/\sigma_i 1\} \end{array}$$

This algorithm is **deterministic** and works in **polynomial time**.

Thank you!

A. Riscos-Núñez (Univ. Sevilla)

P vs. NP in MC

ISBBC 2017 - Valencia 48 / 48