New techniques to address the problem P vs. NP

Mario J. Pérez Jiménez
A. Riscos-Núñez

Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
Universidad de Sevilla

$3^{\text {rd }}$ Int. School on Biomolecular and Biocellular Computing June 28-30, Valencia

RGND

You may say l'm a dreamer

IMCS
\longrightarrow
RGNC
(1) Introduction

- P vs NP
- Complexity Theory in Membrane Computing
(2) Computational complexity framework
- Borderlines of tractability
(3) Final Comments
A. Riscos-Núñez (Univ. Sevilla)
(9) Introduction
- P vs NP
- Complexity Theory in Membrane Computing

(2) Computational complexity framework - Borderlines of tractability

(3) Final Comments

Goal:

- Unconventional approaches/tools to attack the \mathbf{P} versus NP problem are given by using Membrane Computing.

Computability versus Complexity

Computability (1931)

- Define the informal idea of mechanical/algorithmic problems resolution in a rigorous way.
- Which problems are computable in a (universal) model?

Complexity (1970)

- Provide bounds on the amount of resources necessary for every mechanical procedure (algorithm) that solves a given problem.
- Which (computable) problems are efficiently solvable?

RGND

$P=N P$?

- Finding solutions versus checking the correctness of solutions.
- Proofs versus verifying their correctness.

This is essentially the central problem of Computational Complexity theory

It is widely believed that:

- To solve a problem is harder than to check the correctness of a solution
- $\mathbf{P} \neq \mathbf{N P}$.

RGND

Attacking the P versus NP problem

Classical approach (1970):
$\mathbf{P} \neq \mathrm{NP}$.

- Find an NP-complete problem such that it does not belong to the class \mathbf{P}.
- Find an NP-complete problem such that it belongs to the class \mathbf{P}.

Attacking the P versus NP problem

Classical approach (1970):

- $\mathbf{P} \neq \mathbf{N P}$.
- Find an NP-complete problem such that it does not belong to the class \mathbf{P}.
- $\mathbf{P}=\mathbf{N P}$.
- Find an NP-complete problem such that it belongs to the class \mathbf{P}.

RGND

Complexity Theory in Membrane Computing

Unconventional approaches/tools to attack the P versus NP problem are given by using Membrane Computing.

- Polynomial complexity classes associated with (cell-like and tissue-like) P systems are presented.
- A notion of acceptance must be defined in the new framework (different than the classical one for nondeterministic Turing machines)

Nondeterministic Turing machines

Membrane systems

Recognizer P systems

Decision problems

* Computational complexity theory deals with decision problems which are problems that require a "yes" or "no" answer.
* In real-life, many abstract problems are combinatorial
problems not decision problems. Every decision problem has associated a language in a natural way.

RGNC

Recognizer P systems

Decision problems

\star Computational complexity theory deals with decision problems which are problems that require a "yes" or "no" answer.

* In real-life, many abstract problems are combinatorial optimization problems not decision problems.
\star Every decision problem has associated a language in a natural way.
The solvability of decision problems is defined through the recognition of the languages associated with them.

RGNE

Recognizer P systems

Decision problems

\star Computational complexity theory deals with decision problems which are problems that require a "yes" or "no" answer.

* In real-life, many abstract problems are combinatorial optimization problems not decision problems.
* Every decision problem has associated a language in a natural way.

RGND

Recognizer P systems

Decision problems

\star Computational complexity theory deals with decision problems which are problems that require a "yes" or "no" answer.
^ In real-life, many abstract problems are combinatorial optimization problems not decision problems.

* Every decision problem has associated a language in a natural way.
* The solvability of decision problems is defined through the recognition of the languages associated with them.

RGND

Recognizer P systems

Definition

A recognizer P system is a P system with input and external output such that:

- Yes, No
- for tissue, Yes, No \in initial multisets (but not in \mathcal{E} !)
- all computations halt.
- for every computation, one symbol Yes or one symbol No (but not both) is sent out (and in the last step of the computation).
- Accepting/rejecting computations

The sets $\mathcal{N} \mathcal{A} \mathcal{M}, \mathcal{A} \mathcal{M}(-n e)$ and $\mathcal{A} \mathcal{M}(+n e)$.
The sets $\mathcal{T C}, \mathcal{T D C}, \mathcal{T S C}$, and $\mathcal{T} \mathcal{D C}(k), \mathcal{T S C}(k)$, for each $k \geq 1$.

RGND

Polynomial time solvability

Definition

Let \mathcal{R} be a class of recognizer P systems. A decision problem $X=\left(I_{X}, \theta_{X}\right)$ is solvable in polynomial time by a family
$F_{X}=(\Pi(n))_{n \in \mathbb{N}^{+}}$, of \mathcal{R}, if

- F_{X} is polynomially uniform by Turing machines.

RGND

Polynomial time solvability

Definition

Let \mathcal{R} be a class of recognizer P systems. A decision problem $X=\left(I_{X}, \theta_{X}\right)$ is solvable in polynomial time by a family $F_{X}=(\Pi(n))_{n \in \mathbb{N}^{+}}$, of \mathcal{R}, if

- F_{X} is polynomially uniform by Turing machines.
- There exists a pair (cod,s) of pol-time computable functions such that for every $u \in I_{X}$ we have $\operatorname{cod}(u) \in I_{\Pi(s(u))}$, for every $n \in \mathbb{N}$ we have $s^{-1}(n)$ is a finite set, and
- F_{X} is polynomially bounded with regard to (X, cod, s).
- F_{X} is sound and complete, with regard to (X, cod, s).

RGND

Polynomial time solvability

Definition

Let \mathcal{R} be a class of recognizer P systems. A decision problem
$X=\left(I_{X}, \theta_{X}\right)$ is solvable in polynomial time by a family
$F_{X}=(\Pi(n))_{n \in \mathbb{N}^{+}}$, of \mathcal{R}, if

- F_{X} is polynomially uniform by Turing machines.
- There exists a pair (cod,s) of pol-time computable functions such that for every $u \in I_{X}$ we have $\operatorname{cod}(u) \in I_{\Pi(s(u))}$, for every $n \in \mathbb{N}$ we have $s^{-1}(n)$ is a finite set, and
- F_{X} is polynomially bounded with regard to $(X, \operatorname{cod}, s)$.
- F_{X} is sound and complete, with regard to (X, cod, s).

We denote this by $X \in \mathbf{P M C}_{\mathcal{R}}$.
Closed under complement and polynomial-time reductions

RGNE

Solvability of a decision problem

RGNC

Efficiency of a membrane systems class

- Efficiency: Capability to solve NP-complete problems in polynomial time.
- $\mathbf{N P} \cup \mathbf{c o}-\mathbf{N P} \subseteq \mathbf{P M C}_{\mathcal{R}}$.
- Non-Efficiency: $\mathrm{P}=\mathrm{PMC}_{R}$.

Frontiers of the efficiency:

- M efficiont.
- M_{2} non efficient.
- $M_{2} \subseteq M_{1}$: each solution S of a problem X in M_{2} is also a solution in M_{1}

Efficiency of a membrane systems class

- Efficiency: Capability to solve NP-complete problems in polynomial time.
- NP $\cup \mathbf{c o}-\mathbf{N P} \subseteq \mathbf{P M C}_{\mathcal{R}}$.
- Non-Efficiency: $\mathbf{P}=\mathbf{P M C}_{\mathcal{R}}$.

Frontiers of the efficiency:

- M_{1} efficient.
- M_{2} non efficient.
- $M_{2} \subseteq M_{1}$: each solution S of a problem X in M_{2} is also a solution in M_{1}.

Passing from M_{2} to M_{1} amounts to passing from non efficiency to efficiency.

RGND

Efficiency of a membrane systems class

- Efficiency: Capability to solve NP-complete problems in polynomial time.
- NP $\cup \mathbf{c o}-\mathbf{N P} \subseteq \mathbf{P M C}_{\mathcal{R}}$.
- Non-Efficiency: $\mathbf{P}=\mathbf{P M C}_{\mathcal{R}}$.

Frontiers of the efficiency:

- M_{1} efficient.
- M_{2} non efficient.
- $M_{2} \subseteq M_{1}$: each solution S of a problem X in M_{2} is also a solution in M_{1}.

Passing from M_{2} to M_{1} amounts to passing from non efficiency to efficiency.
A. Riscos-Núñez (Univ. Sevilla)

Managing frontiers of the efficiency

Attacking the P versus NP problem

$\mathbf{P}=\mathbf{N P}$

- Finding an NP-complete problem efficiently solvable in M_{2}.
- Translating a polynomial time solution of an NP-complete problem in M_{1}, to a polynomial time solution in M_{2}.

$\mathbf{P} \neq \mathbf{N P}$

- Finding an NP-complete problem not polynomial time solvable in M_{2}.
(1) Introduction
- P vs NP
- Complexity Theory in Membrane Computing
(2) Computational complexity framework - Borderlines of tractability

(3) Final Comments

RGND
A. Riscos-Núñez (Univ. Sevilla)
P vs. NP in MC

Non efficiency of basic P systems

Proposition 1 (Sevilla theorem, 2004)
Every DTM working in polynomial time can be simulated in polynomial time by a family of recognizer basic P systems.

Proposition 2 (Milano theorem, 2000)
If a decision problem is solvable in polynomial time by a family of recognizer basic P systems with input membrane, then there exists a DTM solving it in polynomial time.

Theorem: $\mathbf{P}=\mathbf{P M C}_{\mathcal{T}}$ (Sevilla team, 2004).

- Corollary: $\mathbf{P} \neq \mathbf{N P}$ if and only if every, or at least one, $\mathbf{N P}$-complete problem is
not in $\mathbf{P M C}_{\mathcal{T}}$.

Non efficiency of basic P systems

Proposition 1 (Sevilla theorem, 2004)

Every DTM working in polynomial time can be simulated in polynomial time by a family of recognizer basic P systems.

Proposition 2 (Milano theorem, 2000)
If a decision problem is solvable in polynomial time by a family of recognizer basic P systems with input membrane, then there exists a DTM solving it in polynomial time.

Theorem: $\mathbf{P}=\mathbf{P M C}_{\mathcal{T}}$ (Sevilla team, 2004).

- Corollary: $\mathbf{P} \neq \mathbf{N P}$ if and only if every, or at least one, NP-complete problem is not in $\mathbf{P M C}_{\mathcal{T}}$

RGND

Non efficiency of basic P systems

Proposition 1 (Sevilla theorem, 2004)

Every DTM working in polynomial time can be simulated in polynomial time by a family of recognizer basic P systems.

Proposition 2 (Milano theorem, 2000)
If a decision problem is solvable in polynomial time by a family of recognizer basic P systems with input membrane, then there exists a DTM solving it in polynomial time.

Theorem: $\mathbf{P}=\mathbf{P M C}_{\mathcal{T}}$ (Sevilla team, 2004).

- Corollary: $\mathbf{P} \neq \mathbf{N P}$ if and only if every, or at least one, NP-complete problem is not in $\mathbf{P M C}_{\mathcal{T}}$.

RGND

On efficiency of P systems with active membranes

Proposition 3: A deterministic P system with active membranes but without membrane division can be simulated by a DTM with a polynomial slowdown.
Theorem: $\mathbf{P}=\mathbf{P M C}_{\mathcal{N A M}}$.
Efficient solutions to NP-complete problems in $\mathcal{A M}(-$ ne): - NP $\cup \mathbf{c o}-\mathbf{N P} \subseteq \mathbf{P M C}_{\mathcal{A M}(-n e)}$ (Sevila team 2003, A. Alhazov, C. Martin and L. Pan, 2004).

\square

On efficiency of P systems with active membranes

Proposition 3: A deterministic P system with active membranes but without membrane division can be simulated by a DTM with a polynomial slowdown.

Theorem: $\mathbf{P}=\mathbf{P M C}_{\mathcal{N A M}}$.
Efficient solutions to $\mathbf{N P}$-complete problems in $\mathcal{A M}(-n e)$:

- NP $\cup \mathbf{C O}-\mathbf{N P} \subseteq \mathbf{P M C}_{\mathcal{A} \mathcal{M}(-n e)}$ (Sevilla team 2003, A. Alhazov, C. Martín and L. Pan, 2004).

- (elementary) division rules in $\mathcal{A M}(-n e)$

RGNC

On efficiency of P systems with active membranes

Proposition 3: A deterministic P system with active membranes but without membrane division can be simulated by a DTM with a polynomial slowdown.

Theorem: $\mathbf{P}=\mathbf{P M C}_{\mathcal{N A M}}$.
Efficient solutions to $\mathbf{N P}$-complete problems in $\mathcal{A M}(-n e)$:

- NP $\cup \mathbf{C O}-\mathbf{N P} \subseteq \mathbf{P M C}_{\mathcal{A} \mathcal{M}(-n e)}$ (Sevilla team 2003, A. Alhazov, C. Martín and L. Pan, 2004).

A borderline of the efficiency

- (elementary) division rules in $\mathcal{A M}(-n e)$

RGND

On efficiency of P systems with active membranes

Characterization: PSPACE $=\mathbf{P M C}_{\mathcal{A M}(+n e)}$

(A.E. Porreca, G. Mauri and C. Zandron, 2006, 2008).

Conclusion: $\mathcal{A M}$ is too powerful from the complexity point of view.

RGND

Polarizationless P systems with active membranes

$\Pi=\left(\Gamma, \Sigma, H, \mu, \mathcal{M}_{1}, \ldots, \mathcal{M}_{q}, \mathcal{R}, i_{\text {in }}, i_{\text {out }}\right):$
(a) $[a \rightarrow u]_{h}$ (object evolution rules).
(b) $a[]_{h} \rightarrow[b]_{h}$ (send-in communication rules).
(c) $[a]_{h} \rightarrow[]_{h} b$ (send-out communication rules).
(d) $[a]_{h} \rightarrow b$ (dissolution rules).
(e) $[a]_{h} \rightarrow[b]_{h}[c]_{h}$ (division rules for elementary membranes).
(f) $\left[[]_{h_{1}}[]_{h_{2}}\right]_{h} \rightarrow\left[[]_{h_{1}}\right]_{h}\left[[]_{h_{2}}\right]_{h}$ (division rules for non-elementary membranes).

The sets $\mathcal{N} \mathcal{A} \mathcal{M}^{0}, \mathcal{A} \mathcal{M}^{0}(\alpha, \beta)$, where $\alpha \in\{-d,+d\}$ and $\beta \in\{-n e,+n e\}$.

A Păun's conjecture

At the beginning of 2005 , Gh. Păun (problem \mathbf{F} from ${ }^{1}$) wrote:

My favorite question (related to complexity aspects in P systems with active membranes and with electrical charges) is that about the number of polarizations. Can the polarizations be completely avoided? The feeling is that this is not possible - and such a result would be rather sound: passing from no polarization to two polarizations amounts to passing from non-efficiency to efficiency.

The so-called Păun's conjecture can be formally formulated:

$$
\mathbf{P}=\mathbf{P M C}_{\mathcal{A} \mathcal{M}^{0}(+d,-n e)}
$$

[^0]
Partial answers

AFFIRMATIVE

Non efficiency of $\mathcal{A} \mathcal{M}^{0}(-d,+n e)$
Theorem: $\mathbf{P}=\mathbf{P M C}_{\mathcal{A} \mathcal{M}^{0}(-d,+n e)}$
(Sevilla team, 2006).
(A. Alhazov, Pérez-Jiménez, 2007).

- The notion of dependency graph.

Partial answers

AFFIRMATIVE

Non efficiency of $\mathcal{A} \mathcal{M}^{0}(-d,+n e)$
Theorem: $\mathbf{P}=\mathbf{P M C}_{\mathcal{A M}{ }^{0}(-d,+n e)}$
(Sevilla team, 2006).

NEGATIVE

- Efficiency of $\mathcal{A} \mathcal{M}^{0}(+d,+n e)$:

Theorem: PSPACE \subseteq PMC $_{\mathcal{A M}}{ }^{0}(+d,+n e)$
(A. Alhazov, Pérez-Jiménez, 2007).

- The notion of dependency graph.

RGND

Partial answers

AFFIRMATIVE

Non efficiency of $\mathcal{A} \mathcal{M}^{0}(-d,+n e)$
Theorem: $\mathbf{P}=\mathbf{P M C}_{\mathcal{A} \mathcal{M}^{0}(-d,+n e)}$
(Sevilla team, 2006).

NEGATIVE

- Efficiency of $\mathcal{A M}^{0}(+d,+n e)$:

Theorem: PSPACE \subseteq PMC $_{\mathcal{A M}}{ }^{0}(+d,+n e)$
(A. Alhazov, Pérez-Jiménez, 2007).

- The notion of dependency graph.

A borderline of the efficiency

- dissolution rules in $\mathcal{A M}^{0}(+n e)$.

RGND

On efficiency of polarizationless P systems with active membranes

On efficiency of tissue P systems

Only communication

$$
\mathbf{P}=\mathbf{P M C}_{\mathcal{T C}}
$$

- tissue P systems with only communication rules can be efficiently simulated by basic transition P systems

RGND

Relevance of the rules' length

Length 1 (only symport)

$(i, a / \lambda, j)$

RGND

Relevance of the rules' length

Length 2 (symport)

$(i, a b / \lambda, j)$

Length 2 (antiport)

$(i, a / b, j)$

Borderlines of tractability (rules length)

Division

$$
\begin{array}{|l}
\hline \star \mathbf{N P} \cup \mathbf{C o}-\mathbf{N P} \subseteq \mathbf{P M C}_{\mathcal{T D C}(2)} \\
\hline \star \mathbf{P}=\mathbf{P M C}_{\mathcal{T D C}(1)} \\
\hline
\end{array}
$$

AE Porreca, N Murphy, MJ Pérez.
An Optimal Frontier of the Efficiency of Tissue P Systems with Cell Division.
10thBWMC 2012 (vol.II), 141-166.
R Gutiérrez, MJ Pérez, M Rius.
Characterizing tractability by tissue-like \mathbf{P} systems.
LNCS 5957 (2010), 289-300.

RGND

Borderlines of tractability (rules length)

Separation

$$
\begin{array}{|l}
\hline \star \mathbf{N P} \cup \mathbf{c o}-\mathbf{N P} \subseteq \mathbf{P M C}_{\mathcal{T S C}(3)} \\
\hline \star \mathbf{P}=\mathbf{P M C}_{\mathcal{T S C}(2)} \\
\hline
\end{array}
$$

MJ Pérez, P. Sosík.
Improving the efficiency of tissue P systems with cell separation.
10thBWMC 2012 (vol.II), 105-140.
L Pan, MJ Pérez, A Riscos, M Rius.
New frontiers of the efficiency in tissue P systems.
Pre-proceedings ACMC 2012, pp. 61-73.

RGND

Tissue P systems without environment

- Tissue-like P systems: $\Pi=\left(\Gamma, \Sigma, \mathcal{E}, \mathcal{M}_{1}, \ldots, \mathcal{M}_{q}, \mathcal{R}, i_{\text {in }}, i_{\text {out }}\right)$
- The objects of \mathcal{E} initially appear located in the environment in an arbitrary number of copies.

Tissue-like P systems without environment: $\mathcal{E}=\emptyset$.
The classes $\widehat{\mathcal{T C}}, \widehat{\mathcal{T D C}}, \widehat{\mathcal{T S C}}$, and $\widehat{\mathcal{T C}(k)}, \widehat{\mathcal{T D C}(k)}, \widehat{\mathcal{T S C}(k)}$, for $k \geq 1$.

RGNE

Division makes environment irrelevant

Theorem

$$
\forall k \in \mathbb{N}\left(\mathbf{P M C}_{\mathcal{T D C}(k+1)}=\mathbf{P M C}_{\widehat{\mathcal{T D C}}(k+1)}\right)
$$

MJ Pérez, A Riscos, M Rius, FJ Romero.
A polynomial alternative to unbounded environment for tissue \mathbf{P} systems with cell division.
IJCM, 90 (4) (2013)

RGND

On Efficiency of tissue P systems without environment Division rules

- $\mathbf{P}=\mathbf{P M C}_{\widehat{\mathcal{T D C}}(1)}$.
- $\mathbf{N P} \cup \mathbf{C O}$ - NP $\subseteq \mathbf{P M C}_{\widehat{\mathcal{T D C}}(2)}$.

A borderline of the efficiency

- Length of communication rules in $\widehat{\mathcal{T D}}$.

RGNT

Borderlines of tractability (environment)

Separation
 $\mathbf{P}=\mathbf{P M C}_{\widehat{\mathcal{T S C}}}$

LF Macías, MJ Pérez, A Riscos, M Rius.
The efficiency of tissue \mathbf{P} systems with cell separation relies on the environment.
Proceedings CMC 2012, pp. 277-290.

RGND

On Efficiency of tissue P systems without environment Separation rules

- $\mathbf{P}=\mathbf{P M C}_{\widehat{\mathcal{T S C}}(3)}$.
- $\mathbf{N P} \cup \mathbf{c o}-\mathbf{N P} \subseteq \mathbf{P M C}_{\mathcal{T S C}(3)}$.

A borderline of the efficiency

- Environment in $\mathcal{T S C}(3)$.

RGND

(1) Introduction

- P vs NP
- Complexity Theory in Membrane Computing

(2) Computational complexity framework
 - Borderlines of tractability

(3) Final Comments

RGND
A. Riscos-Núñez (Univ. Sevilla)
P vs. NP in MC
ISBBC 2017 - Valencia
$36 / 48$

Conclusions: "New" Frontiers of the efficiency

- Kind of rules:
- Division rules in $\mathcal{A M}$.
- Division rules in $\mathcal{T C}$.
- Dissolution rules in $\mathcal{A M}^{0}(+n e)$.
- The length of communication rules:
- Passing from 1 to 2 in $\mathcal{T \mathcal { D }}$.
- Passing from 1 to 2 in $\mathcal{T \mathcal { D }}$.
- Passing from 2 to 3 in $\mathcal{T S}$.
- In the framework $\mathcal{T S C}(3)$

Conclusions: "New" Frontiers of the efficiency

- Kind of rules:
- Division rules in $\mathcal{A M}$.
- Division rules in $\mathcal{T C}$.
- Dissolution rules in $\mathcal{A M}^{0}(+n e)$.
- The length of communication rules:
- Passing from 1 to 2 in $\mathcal{T D}$.
- Passing from 1 to 2 in $\overparen{\mathcal{T}}$.
- Passing from 2 to 3 in $\mathcal{T S}$.
- The environment:
- In the framework $\mathcal{T S C}(3)$.
\square

RGNC

Conclusions: "New" Frontiers of the efficiency

- Kind of rules:
- Division rules in $\mathcal{A M}$.
- Division rules in $\mathcal{T C}$.
- Dissolution rules in $\mathcal{A M}^{0}(+n e)$.
- The length of communication rules:
- Passing from 1 to 2 in $\mathcal{T D}$.
- Passing from 1 to 2 in $\overparen{\mathcal{T}}$.
- Passing from 2 to 3 in $\mathcal{T S}$.
- The environment:
- In the framework $\mathcal{T S C}(3)$.
\square
Each of them provides a new way to attack the P versus NP problem.
A. Riscos-Núñez (Univ. Sevilla)

Conclusions: "New" Frontiers of the efficiency

- Kind of rules:
- Division rules in $\mathcal{A M}$.
- Division rules in $\mathcal{T C}$.
- Dissolution rules in $\mathcal{A M}^{0}(+n e)$.
- The length of communication rules:
- Passing from 1 to 2 in $\mathcal{T D}$.
- Passing from 1 to 2 in $\overparen{\mathcal{T}}$.
- Passing from 2 to 3 in $\mathcal{T S}$.
- The environment:
- In the framework $\mathcal{T S C}(3)$.

Each of them provides a new way to attack the P versus NP problem.
A. Riscos-Núñez (Univ. Sevilla)
P vs. NP in MC
ISBBC 2017 - Valencia
$37 / 48$

Borderlines of tractability

$\mathbf{P}=\mathbf{P M C}_{\mathcal{T C}}$ (Sevilla team, 2009).
$\mathbf{P}=\mathbf{P M C}_{\mathcal{T D C}(1)}$ (Sevilla team, 2010).
$\mathbf{P}=\mathbf{P M C}_{\mathcal{T S C}(2)}$ (L. Pan, Pérez-Jiménez, A. Riscos, M. Rius, 2012).
$\mathrm{NP} \cup \mathrm{CO}-\mathrm{NP} \subseteq \mathrm{PMC}_{\text {TDC(2) }}$ (A. Porreca, N. Murphy, Pérez-Jiménez, 2012).
$\mathbf{N P} \cup \mathbf{C o}-\mathbf{N P} \subseteq \mathbf{P M C}_{\mathcal{T S C}(3)}$ (P. Sosík, Pérez-Jiménez, 2012).

Borderlines of the efficiency
in the fran ework of TC

IMCS

RGND

Borderlines of tractability

$\mathbf{P}=\mathbf{P M C}_{\mathcal{T C}}$ (Sevilla team, 2009).
$\mathbf{P}=\mathbf{P M C}_{\mathcal{T D C}(1)}$ (Sevilla team, 2010).
$\mathbf{P}=\mathbf{P M C}_{\mathcal{T S C}(2)}$ (L. Pan, Pérez-Jiménez, A. Riscos, M. Rius, 2012).
$\mathbf{N P} \cup \mathbf{C o}-\mathbf{N P} \subseteq \mathbf{P M C}_{\mathcal{T} \mathcal{D C}(2)}$ (A. Porreca, N. Murphy, Pérez-Jiménez, 2012).
$\mathbf{N P} \cup \mathbf{c o}-\mathbf{N P} \subseteq \mathbf{P M C}_{\mathcal{T S C}(3)}$ (P. Sosík, Pérez-Jiménez, 2012).

Borderlines of the efficiency

- division rulas in the framework of TC.

$$
\text { in the framework of } \mathcal{T} \mathcal{D} \text { : }
$$

Borderlines of tractability

$\mathbf{P}=\mathbf{P M C}_{\mathcal{T C}}$ (Sevilla team, 2009).
$\mathbf{P}=\mathbf{P M C}_{\mathcal{T D C}(1)}$ (Sevilla team, 2010).
$\mathbf{P}=\mathbf{P M C}_{\mathcal{T S C}(2)}$ (L. Pan, Pérez-Jiménez, A. Riscos, M. Rius, 2012).
$\mathbf{N P} \cup \mathbf{c o}-\mathbf{N P} \subseteq \mathbf{P M C}_{\mathcal{T D C}(2)}$ (A. Porreca, N. Murphy, Pérez-Jiménez, 2012).
$\mathbf{N P} \cup \mathbf{c o} \mathbf{-} \mathbf{N P} \subseteq \mathbf{P M C}_{\mathcal{T S C}(3)}$ (P. Sosík, Pérez-Jiménez, 2012).

Borderlines of the efficiency

- division rules in the framework of $\mathcal{T C}$.
passing from non-efficiency to efficiency.
in the framework of $\mathcal{T S}$:

IMCS
\longrightarrow

Borderlines of tractability

$\mathbf{P}=\mathbf{P M C}_{\mathcal{T C}}$ (Sevilla team, 2009).
$\mathbf{P}=\mathbf{P M C}_{\mathcal{T D C}(1)}$ (Sevilla team, 2010).
$\mathbf{P}=\mathbf{P M C}_{\mathcal{T S C}(2)}$ (L. Pan, Pérez-Jiménez, A. Riscos, M. Rius, 2012).
$\mathbf{N P} \cup \mathbf{c o}-\mathbf{N P} \subseteq \mathbf{P M C}_{\mathcal{T D C}(2)}$ (A. Porreca, N. Murphy, Pérez-Jiménez, 2012).
$\mathbf{N P} \cup \mathbf{c o} \mathbf{-} \mathbf{N P} \subseteq \mathbf{P M C}_{\mathcal{T S C}(3)}$ (P. Sosík, Pérez-Jiménez, 2012).

Borderlines of the efficiency

- division rules in the framework of $\mathcal{T C}$.
- length of communication rules in the framework of $\mathcal{T} \mathcal{D}$: passing from 1 to 2 amounts to passing from non-efficiency to efficiency.
in the framework of $\mathcal{T} \mathcal{S}$: passing from 2 to 3 amounts to
passing from non-efficiency to efficiency.

Borderlines of tractability

$\mathbf{P}=\mathbf{P M C}_{\mathcal{T C}}$ (Sevilla team, 2009).
$\mathbf{P}=\mathbf{P M C}_{\mathcal{T D C}(1)}$ (Sevilla team, 2010).
$\mathbf{P}=\mathbf{P M C}_{\mathcal{T S C}(2)}$ (L. Pan, Pérez-Jiménez, A. Riscos, M. Rius, 2012).
$\mathbf{N P} \cup \mathbf{c o} \mathbf{- N P} \subseteq \mathbf{P M C}_{\mathcal{T D C}(2)}$ (A. Porreca, N. Murphy, Pérez-Jiménez, 2012).
$\mathbf{N P} \cup \mathbf{c o} \mathbf{-} \mathbf{N P} \subseteq \mathbf{P M C}_{\mathcal{T S C}(3)}$ (P. Sosík, Pérez-Jiménez, 2012).

Borderlines of the efficiency

- division rules in the framework of $\mathcal{T C}$.
- length of communication rules in the framework of $\mathcal{T D}$: passing from 1 to 2 amounts to passing from non-efficiency to efficiency.
- length of communication rules in the framework of $\mathcal{T S}$: passing from 2 to 3 amounts to passing from non-efficiency to efficiency.

Final Comments (environment in tissue)

Division: No influence of the environment

$$
\begin{aligned}
& \star \mathbf{N P} \cup \mathbf{c o}-\mathbf{N P} \subseteq \mathbf{P M C}_{\mathcal{T D C}(2)}=\mathbf{P M C}_{\widehat{\mathcal{T D C}}(2)} \\
& \star \mathbf{P}=\mathbf{P M C}_{\mathcal{T D C}(1)}=\mathbf{P M C}_{\widehat{\mathcal{T D C}}(1)}
\end{aligned}
$$

Separation: Efficiency relies on the environment

$$
\begin{aligned}
& \star \mathbf{N P} \cup \mathbf{C o}-\mathbf{N P} \subseteq \mathbf{P M C}_{\mathcal{T S C}(3)} \\
& \star \mathbf{P}=\mathbf{P M C}_{\widehat{\mathcal{T S C}}(3)} \\
& \hline
\end{aligned}
$$

Separation vs. Division

$$
\begin{aligned}
& \star \mathbf{N P} \cup \mathbf{C O}-\mathbf{N P} \subseteq \mathbf{P M C}_{\mathcal{T D C}(2)}=\mathbf{P M C}_{\widehat{\mathcal{T D C}}(2)} \\
& \star \mathbf{P}=\mathbf{P M C}_{\mathcal{T S C}(2)}=\mathbf{P M C}_{\widehat{\mathcal{T S C}}(2)}
\end{aligned}
$$

Thank you!

RGNE
A. Riscos-Núñez (Univ. Sevilla)
P vs. NP in MC
ISBBC 2017 - Valencia
(4) Strategies

- Algorithmic (Dependency graph)
- Simulation

RGNC
A. Riscos-Núñez (Univ. Sevilla)

Borderlines of tractability (environment)

 HAM-CYCLE $\in \mathbf{P M C}_{\widehat{\mathcal{T D C}}(2)}$

HAM-CYCLE $\in \mathbf{P M C}_{\widehat{T D C}(2)}$

RGND

$\mathrm{HAM}-\mathrm{CYCLE} \in \mathbf{P M C}_{\widehat{\operatorname{TDC}}(2)}$

One cell for each symbol in the environment alphabet

RGND

$\mathrm{HAM}_{-C Y C L E} \in \mathbf{P M C}_{\widehat{\operatorname{TDC}}(2)}$

$\mathbf{P}=\mathbf{P M C}_{\widehat{\overline{T S C}}}$ (Sketch of the proof)

- Key idea: only one computation is simulated
* sufficient because of confluence condition

Selection stage

(1) Loop over the (ordered) set of communication rules

- apply maximally
(2) Loop over the (ordered) set of separation rules
- apply if possible
- cells with same label get unique tags (strings over 0's and 1's)
- used cells are tracked to avoid incorrect application of separation rules

RGND

$\mathbf{P}=\mathbf{P M C}_{\widehat{\bar{T} S C}}$ (Sketch of the proof)

- Key idea: only one computation is simulated
* sufficient because of confluence condition

Selection stage

(1) Loop over the (ordered) set of communication rules

- apply maximally
(2) Loop over the (ordered) set of separation rules
- apply if possible

Execution stage

- Loop over the applied rules
- update objects from RHS of communication rules
- create cells (new tags) for separation rules, distributing objects

Pseudocode (Selection stage)

Input: A configuration \mathcal{C}_{t} of Π at instant t
for $r \equiv(i, u / v, j) \in R_{C} \quad$ (ordered) do for each pair $\left(i, \sigma_{i}\right),\left(j, \sigma_{j}\right)$ of \mathcal{C}_{t}^{\prime} (ordered) do $n_{r} \leftarrow \max$ number of applicablications if $n_{r}>0$ then

$$
\begin{aligned}
& \mathcal{C}_{t}^{\prime} \leftarrow \mathcal{C}_{t}^{\prime} \backslash n_{r} \cdot \operatorname{LHS}\left(r,\left(i, \sigma_{i}\right),\left(j, \sigma_{j}\right)\right) \\
& A \leftarrow A \cup\left\{\left(r, n_{r},\left(i, \sigma_{i}\right),\left(j, \sigma_{j}\right)\right)\right\} \\
& B \leftarrow B \cup\left\{\left(i, \sigma_{i}\right),\left(j, \sigma_{j}\right)\right\}
\end{aligned}
$$

for $r \equiv[a]_{i} \rightarrow\left[\Gamma_{0}\right]_{i}\left[\Gamma_{1}\right]_{i} \in R_{S} \quad$ (ordered) do for each $\left(a, i, \sigma_{i}\right) \in \mathcal{C}_{t}^{\prime}$ (ordered), s.t. $\left(i, \sigma_{i}\right) \notin B$ do

$$
\begin{aligned}
& \mathcal{C}_{t}^{\prime} \leftarrow \mathcal{C}_{t}^{\prime} \backslash\left\{\left(a, i, \sigma_{i}\right)\right\} \\
& A \leftarrow A \cup\left\{\left(r, 1,\left(i, \sigma_{i}\right)\right)\right\} \\
& B \leftarrow B \cup\left\{\left(i, \sigma_{i}\right)\right\}
\end{aligned}
$$

Pseudocode (Execution stage)

Input: The output \mathcal{C}_{t}^{\prime} and A of the selection stage for each $\left(r, n_{r},\left(i, \sigma_{i}\right),\left(j, \sigma_{j}\right)\right) \in A$ do $\mathcal{C}_{t}^{\prime} \leftarrow \mathcal{C}_{t}^{\prime}+n_{r} \cdot \operatorname{RHS}\left(r,\left(i, \sigma_{i}\right),\left(j, \sigma_{j}\right)\right)$
for each $\left(r, 1,\left(i, \sigma_{i}\right)\right) \in A$ do

$$
\mathcal{C}_{t}^{\prime} \leftarrow \mathcal{C}_{t}^{\prime}+\left\{\left(\lambda, i, \sigma_{i}\right) / \sigma_{i} 0\right\}+\left\{\left(\lambda, i, \sigma_{i} 1\right)\right\}
$$

for each $\left(x, i, \sigma_{i}\right) \in \mathcal{C}_{t}^{\prime}$ (ordered) do

$$
\text { if } \begin{aligned}
x \in \Gamma_{0} & \text { then } \mathcal{C}_{t}^{\prime} \leftarrow \mathcal{C}_{t}^{\prime}+\left\{\left(x, i, \sigma_{i}\right) / \sigma_{i} 0\right\} \\
& \text { else } \mathcal{C}_{t}^{\prime} \leftarrow \mathcal{C}_{t}^{\prime}+\left\{\left(x, i, \sigma_{i}\right) / \sigma_{i} 1\right\}
\end{aligned}
$$

This algorithm is deterministic and works in polynomial time.

Thank you!

RGNE
A. Riscos-Núñez (Univ. Sevilla)
P vs. NP in MC
ISBBC 2017 - Valencia

[^0]: ${ }^{1}$ Gh. Păun: Further twenty six open problems in membrane computing. Third Brainstorming Week on Membrane Computing (M.A. Gutiérrez et al. eds.), Fénix Editora, Sevilla, 2005, pp. 249-262.

