P Systems with fuzzy ingredients

Definitions and applications

Third International School on Biomolecular and Biocellular Computing 28th – 30th June, 2017 Valencia (Spain)

Research Group on Natural Computing

Universidad de Sevilla

Motivation

Membrane computing models inspired by structure and functioning of cells. Uncertainty is an inherent property of living systems.

Reasons to add uncertainty ingredients to P systems:

- · Ability to deal with imprecise information.
- · Semantics closer to behaviour of real cells.
- · Real biological processes modellization.

Two approaches:

- Probabilistic ingredients.
- · Fuzzy ingredients.

Fuzzy sets

Fuzzy predicate:

- · Admit different degrees of truth.
 - · John is young.
 - · Temperature is very high.
- · Represented by fuzzy sets.

Given a universe E:

- · Classic or crisp set $A \subseteq E$: $\mu_A: E \to \{0, 1\}$
- Fuzzy set $A \subseteq E$: $\mu_A : E \to [0, 1]$

Membership functions

Finite universe
$$E=\left\{x_1,\ldots,x_n\right\}$$

$$A=\mu_A(x_1)\big/x_1+\cdots+\mu_A(x_n)\big/x_n$$

Ages =
$$\{20, 30, 40, 50\}$$

John is young = $.4/20 + 1/30 + .8/40 + .2/50$

Membership functions

Continuous universe $E = \mathbb{R}$:

Trapezoidal
$$(a, b, c, d)$$
: $\mu_A(x) = \max\left(\min\left(\frac{x-a}{b-a}, 1, \frac{d-x}{d-c}\right), 0\right)$

John is young = trapezoidal (20, 25, 45, 50)

Membership functions

Continuous universe $E = \mathbb{R}$:

Gaussian
$$(\mu, \sigma)$$
: $\mu_A(x) = e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2}$

Fuzzy set operations

Intersection:
$$\mu_{A \cap B}(x) = T(\mu_A(x), \mu_B(x))$$

- $T: [0,1]^2 \to [0,1]$ is called a norm.
- Must verify

$$T(0,0) = T(0,1) = T(1,0) = 0$$

 $T(1,1) = 1$

• Usually $T(x, y) = \min(x, y)$.

Fuzzy set operations

Union:
$$\mu_{A \cup B}(x) = S(\mu_A(x), \mu_B(x))$$

- $S: [0,1]^2 \rightarrow [0,1]$ is called a conorm.
- Must verify

$$S(0,1) = S(1,0) = S(1,1) = 1$$

 $S(0,0) = 0$

· Usually $S(x, y) = \max(x, y)$.

Fuzzy set operations

Complement:
$$\mu_{E \setminus A}(x) = N(\mu_A(x))$$

- $\cdot N: [0,1] \rightarrow [0,1]$ is called a negation.
- Must verify

$$N(0) = 1$$
$$N(1) = 0$$

• Usually N(x) = 1 - x.

Linguistic variables

A linguistic variable is a set of fuzzy terms.

$$Age = \{child, young, old\}$$

Hedges

A hedge is an adjective or adverb that modify the truth value of a proposition.

Hedges

A hedge is an adjective or adverb that modify the truth value of a proposition.

Hedges

A hedge is an adjective or adverb that modify the truth value of a proposition.

John is somewhat young = $\sqrt{\text{gaussian}(35,5)}$

Fuzzy production systems

Production system is expert system with rules of the type

IF antecedent THEN consequent

In a fuzzy production system:

- Antecedent and consequent: logical combinations of fuzzy propositions involving linguistic terms.
- Logic truth of a logical combination: computed using a norm (conjunctions), a conorm (disjunctions) and a complement (negations).
- Uncertainty about the correctness of rules: confidence factors.

Example of rules

IF ϕ_{19} THEN ϕ_{18} ($\tau = 1$)

IF ϕ_{25} AND NOT ϕ_7 THEN ϕ_6 ($\tau=0.8$)

```
\phi_6 = Flow path of the combustor wears and tears \phi_7 = Flow rate of the fuel in the combustor is too high \phi_{18} = Compressor is in turbulence \phi_{19} = Blade of compressor breaks down \phi_{25} = Spray head of turbine is broken
```

Types of rules

1. Simple fuzzy production rule:

IF
$$\phi$$
 THEN ψ

2. Composite fuzzy conjunctive rules:

IF
$$\phi_1$$
 AND \cdots AND ϕ_n THEN ψ IF ϕ THEN ψ_1 AND \cdots AND ψ_n

3. Composite fuzzy disjunctive rules:

IF
$$\phi_1$$
 OR \cdots OR ϕ_n THEN ψ IF ϕ THEN ψ_1 OR \cdots OR ψ_n

(AND-rule)

(OR-rule)

Types of rules

1. Simple fuzzy production rule:

IF
$$\phi$$
 THEN ψ

2. Composite fuzzy conjunctive rules:

IF
$$\phi_1$$
 AND \cdots AND ϕ_n THEN ψ IF ϕ THEN ψ_1 AND \cdots AND ψ_n

3. Composite fuzzy disjunctive rules:

IF
$$\phi_1$$
 OR \cdots OR ϕ_n THEN ψ
IF ϕ THEN ψ_1 OR \cdots OR ψ_n

(AND-rule)

(OR-rule)

Inference

Given:

- A rule with confidence factor τ .
- A truth value α_i for each proposition ϕ_i in the antecedent.

Truth value derived for consequent ψ :

- · AND-rules: $\min(\alpha_1, \ldots, \alpha_n) \cdot \tau$
- · OR-rules: $\max(\alpha_1,\ldots,\alpha_n)\cdot au$

Inference

Given:

- A rule with confidence factor τ .
- A truth value α_i for each proposition ϕ_i in the antecedent.

Truth value derived for consequent ψ :

- · AND-rules: $\min(\alpha_1, \ldots, \alpha_n) \cdot \tau$
- · OR-rules: $\max(\alpha_1, \ldots, \alpha_n) \cdot \tau$

Final truth value for proposition ψ : $\max(lpha_{r_1},\ldots,lpha_{r_m})$

- r_1, \ldots, r_m all rules with consequent ψ .
- $\cdot \alpha_{r_i}$ truth value for ψ derived from r_i .

FRSN P Systems

A Fuzzy Reasoning Spiking Neural P System aims to represent and make inferences from a fuzzy production system.

FRSN P Systems

A Fuzzy Reasoning **Spiking Neural P System** aims to represent and make inferences from a fuzzy production system.

- Inspired by neuron inter-communications by means of short electrical impulses.
- Directed graph, the nodes representing neurons, the arcs representing synapses.
- Impulses described by multiplicity of an object a (spike) from a singleton alphabet.
- Neurons send spikes depending on their current number of spikes.

FRSN P Systems

A Fuzzy Reasoning Spiking Neural P System aims to represent and make inferences from a fuzzy production system.

- Proposition neurons: represent fuzzy propositions.
 - Input neurons: receive no spike.
 - · Output neurons: send no spike.
- · Rule neurons: represent production rules.
 - AND-type neurons.
 - OR-type neurons.
- Synapses connect proposition neurons with rule neurons or vice versa.

Formalization

FRSN P System of degree $q \ge 1$:

$$\left(A, \sigma_1, \ldots, \sigma_q, \mathit{syn}, \mathit{IN}, \mathit{OUT}, \mathit{PN}, \mathit{RN}_{\mathrm{AND}}, \mathit{RN}_{\mathrm{OR}}, P, C \right)$$

- $\cdot A = \{a\}$ singleton alphabet.
- \cdot (V, syn) directed graph:
 - $\cdot V = PN \coprod RN_{\mathrm{AND}} \coprod RN_{\mathrm{OR}} = \{\sigma_1, \dots, \sigma_q\}.$
 - · $indegree(\sigma) > 0 \lor outdegree(\sigma) > 0$, for all $\sigma \in V$.
 - $\cdot \left(\sigma \in PN \land \sigma' \in RN \right) \lor \left(\sigma \in RN \land \sigma' \in PN \right), \text{ for all }$ $\left(\sigma, \sigma' \right) \in \textit{syn}.$
 - A function $\gamma_{(\sigma,\sigma')}$: $[0,1] \to [0,1]$ associated with each arc $(\sigma,\sigma') \in syn$.
- · $IN = {\sigma \in PN \mid indegree(\sigma) = 0}$ nonempty.
- · $OUT = {\sigma \in PN \mid outdegree(\sigma) = 0}$ nonempty.

Formalization

- $P = (p_1, \dots, p_q), p_i \in [0, 1].$
- $C = (c_1, ..., c_q), c_i \in [0, 1], c_i > 0 \text{ if } \sigma_i \in RN.$
- Each node $\sigma_i = (\alpha_i, c_i, F_i)$:
 - $\cdot \alpha_i \in [0, 1].$
 - F_i the identity over [0,1] for $\sigma_i \in IN$.
 - · If $indegree(\sigma_i) = n_i > 0$ then F_i : $[0,1]^{n_i} \rightarrow [0,1]$ and the value $F_i(x_1,\ldots,x_{n_i})$ is defined as follows:
 - · $\max(\gamma_1(x_1), \dots, \gamma_{n_i}(x_{n_i}))$, if $\sigma_i \in PN$.
 - · $\max(\gamma_1(x_1), \dots, \gamma_{n_i}(x_{n_i})) \cdot c_i$, if $\sigma_i \in RN_{OR}$.
 - · $\min(\gamma_1(x_1), \dots, \gamma_{n_i}(x_{n_i})) \cdot c_i$, if $\sigma_i \in RN_{AND}$.

where γ_j function associated with j-th incoming arc of σ_i .

Rules of the production system: $\{r_1, \ldots, r_{n_r}\}$ Propositions present in the rules: $\{\phi_1, \ldots, \phi_{n_p}\}$ Construct the following FRSN P System:

$$\left(A, \sigma_1, \ldots, \sigma_q, \mathit{syn}, \mathit{IN}, \mathit{OUT}, \mathit{PN}, \mathit{RN}_{\mathrm{AND}}, \mathit{RN}_{\mathrm{OR}}, P, C \right)$$

Rules of the production system: $\{r_1,\ldots,r_{n_r}\}$ Propositions present in the rules: $\{\phi_1,\ldots,\phi_{n_p}\}$ Construct the following FRSN P System:

$$\left(A, \sigma_1, \ldots, \sigma_q, \mathit{syn}, \mathit{IN}, \mathit{OUT}, \mathit{PN}, \mathit{RN}_{\mathrm{AND}}, \mathit{RN}_{\mathrm{OR}}, P, C \right)$$

One neuron for each proposition and each rule:

$$\begin{aligned} \textit{PN} &= \left\{\sigma_1, \dots, \sigma_{n_p}\right\} \\ \textit{RN}_{\text{AND}} &= \left\{\sigma_{n_p + \text{i}} \mid r_i \text{ an AND-rule}\right\} \\ \textit{RN}_{\text{OR}} &= \left\{\sigma_{n_p + \text{i}} \mid r_i \text{ an OR-rule}\right\} \end{aligned}$$

Rules of the production system: $\{r_1, \ldots, r_{n_r}\}$ Propositions present in the rules: $\{\phi_1, \ldots, \phi_{n_p}\}$ Construct the following FRSN P System:

$$\left(A, \sigma_1, \ldots, \sigma_q, \mathit{syn}, \mathit{IN}, \mathit{OUT}, \mathit{PN}, \mathit{RN}_{\mathrm{AND}}, \mathit{RN}_{\mathrm{OR}}, P, C \right)$$

For each rule r_i :

- · An arc $(\sigma_j,\sigma_{n_p+i})$ for each ϕ_j antecedent of r_i .
- · An arc $\left(\sigma_{n_n+i},\sigma_j\right)$ for each ϕ_j consequent of r_i .
- $\cdot \gamma(x) = 1 x$ if ϕ_j is negated in the rule, $\gamma(x) = x$ otherwise.

Rules of the production system: $\{r_1, \ldots, r_{n_r}\}$ Propositions present in the rules: $\{\phi_1, \ldots, \phi_{n_p}\}$ Construct the following FRSN P System:

$$(A, \sigma_1, \dots, \sigma_a, \text{syn}, \text{IN}, \text{OUT}, \text{PN}, \text{RN}_{\text{AND}}, \text{RN}_{\text{OR}}, P, C)$$

$$P = \{p_1, \dots, p_{n_p}, p_{n_p+1}, \dots, p_{n_p+n_r}\}$$

- · p_i initial truth value of proposition ϕ_i .
- $\cdot p_{n_n+i}=0.$

Rules of the production system: $\{r_1, \ldots, r_{n_r}\}$ Propositions present in the rules: $\{\phi_1, \ldots, \phi_{n_p}\}$ Construct the following FRSN P System:

$$\left(A, \sigma_1, \ldots, \sigma_q, \mathsf{syn}, \mathsf{IN}, \mathsf{OUT}, \mathsf{PN}, \mathsf{RN}_{\mathrm{AND}}, \mathsf{RN}_{\mathrm{OR}}, P, C \right)$$

$$C = \{c_1, \dots, c_{n_p}, c_{n_p+1}, \dots, c_{n_p+n_r}\}$$

- $\cdot c_i = p_i \text{ for } i \leq n_p.$
- · c_{n_p+i} confidence factor for rule r_i .

Configurations

State $s(\sigma, t)$ of σ at instant t: $(\alpha_{\sigma}(t), f_{\sigma}(t), G_{\sigma}(t))$

- $\alpha_{\sigma}(t) \in [0, 1]$ represents pulse value in neuron σ .
- \cdot $f_{\sigma}(t)$ represents if neuron σ ready or not to fire.
- $G_{\sigma}(t) \in [0,1]$ represents pulse value neuron σ will send.

Configuration C_t of Π at instant t: $\left(s(\sigma_1,t),\ldots,s(\sigma_q,t)\right)$

Initial configuration:

$$s(\sigma_i, 0) = \begin{cases} (p_i, 1, p_i), & \text{if } \sigma_i \in IN \\ (p_i, 0, 0), & \text{if } \sigma_i \notin IN \end{cases}$$

Transition steps

For $\sigma_i \in IN$:

$$s(\sigma_i, t+1) = \begin{cases} (p_i, 1, p_i), & \text{if } t < t_D \\ (p_i, 0, 0), & \text{if } t \ge t_D \end{cases}$$

 $t_{\it D}$ maximum length of paths from $\it IN$ to $\it OUT$ neurons.

Transition steps

For $\sigma_i \notin IN$:

If
$$\sigma_i \in \mathit{PN} \cup \mathit{RN}_{\mathrm{OR}}$$

$$\alpha_{\sigma_i}(t+1) = \max \left(\gamma \left(G_{\sigma}(t) \right) \; \middle| \; \sigma \in \mathit{Presyn} \left(\sigma_i \right) \land f_{\sigma}(t) = 1 \right)$$

If
$$\sigma_i \in RN_{AND}$$

$$\alpha_{\sigma_i}(t+1) = \min \left(\gamma \left(G_{\sigma}(t) \right) \; \middle| \; \sigma \in \mathit{Presyn} \left(\sigma_i \right) \land f_{\sigma}(t) = 1 \right)$$

$$\textit{Presyn}\left(\sigma_{i}\right) = \left\{\sigma \mid \left(\sigma, \sigma_{i}\right) \in \textit{syn}\right\} = \left\{\sigma_{i}^{1}, \ldots, \sigma_{i}^{m_{i}}\right\}$$

Transition steps

For $\sigma_i \notin IN$:

$$f_{\sigma_i}(t+1)=1 \text{ if and only if } \sigma_i \not\in \mathit{OUT} \text{ and } f_{\sigma}(t)=1 \text{, for all } \sigma \in \mathit{Presyn} \left(\sigma_i\right)$$

$$G_{\sigma_i}(t+1) = \begin{cases} 0, & \text{if } f_{\sigma_i}(t+1) = 0 \\ F_{\sigma_i}\left(G_{\sigma_i^1}(t), \dots, G_{\sigma_i^{m_i}}(t)\right), & \text{if } f_{\sigma_i}(t+1) = 1 \end{cases}$$

$$\textit{Presyn}\left(\sigma_{i}\right) = \left\{\sigma \mid \left(\sigma, \sigma_{i}\right) \in \textit{syn}\right\} = \left\{\sigma_{i}^{1}, \ldots, \sigma_{i}^{\textit{m}_{i}}\right\}$$

Halting configuration

A computation halts when it reaches a configuration C_t such that $f_{\sigma}(t)=0$, for all neuron σ .

The result of a halting computation is encoded in the pulse values $\alpha_{\sigma}(t)$ of the output neurons $\sigma \in \mathit{OUT}$.

Example of computation

Consider the rule $R = \text{IF } \phi_1$ AND NOT ϕ_2 THEN ϕ_3 , with confidence factor τ . Suppose the truth value of ϕ_i is p_i .

Example of computation

Consider the rule $R = \text{IF } \phi_1$ AND NOT ϕ_2 THEN ϕ_3 , with confidence factor τ . Suppose the truth value of ϕ_i is p_i .

Computation:

$$C_0 = \left(p_1, 1, p_1\right), \left(p_2, 1, p_2\right), \left(p_3, 0, 0\right), (0, 0, 0)$$

Example of computation

Consider the rule $R = \text{IF } \phi_1$ AND NOT ϕ_2 THEN ϕ_3 , with confidence factor τ . Suppose the truth value of ϕ_i is p_i .

Computation:

$$C_1 = (p_1, 1, p_1), (p_2, 1, p_2), (p_3, 0, 0),$$

$$(\min(p_1, 1 - p_2), 1, \min(p_1, 1 - p_2) \cdot \tau)$$

Example of computation

Consider the rule $R = \text{IF } \phi_1$ AND NOT ϕ_2 THEN ϕ_3 , with confidence factor τ . Suppose the truth value of ϕ_i is p_i .

Computation:

$$C_2 = (p_1, 0, 0), (p_2, 0, 0), (\min(p_1, 1 - p_2) \cdot \tau, 0, 0), (\min(p_1, 1 - p_2), 1, \min(p_1, 1 - p_2) \cdot \tau)$$

Example of computation

Consider the rule $R = \text{IF } \phi_1$ AND NOT ϕ_2 THEN ϕ_3 , with confidence factor τ . Suppose the truth value of ϕ_i is p_i .

Computation:

$$\begin{split} C_3 = & \big(p_1, 0, 0 \big), \big(p_2, 0, 0 \big), \big(\min \big(p_1, 1 - p_2 \big) \cdot \tau, 0, 0 \big), \\ & \big(\min \big(p_1, 1 - p_2 \big), 0, 0 \big) \end{split}$$

Application example: turbine fault diagnosis

Expert system with propositions

- ϕ_1 Cross section area of turbine's path is too large (0.6)
- ϕ_2 Efficiency of assembling unit is too low (1)
- ϕ_3 $\,\,$ Ventilation side of the guider's blade of turbine wears and tears
- ϕ_4 Inlet gas temperature of turbine is too low (0)
- ϕ_5 Pressurization ratio of the compressor is too low (0.2)
- ϕ_6 Flow path of the combustor wears and tears
- ϕ_7 Flow rate of the fuel in the combustor is too high (0)
- $\phi_8 \quad \mbox{ Higher pressure level's spray head of the turbine is broken }$
- ϕ_9 Outlet gas temperature of turbine is too high (0.2)
- ϕ_{10} Efficiency of turbine is too low (0.9)
- ϕ_{11} Flow coefficient of turbine is too low (0)
- ϕ_{12} Blade of the turbine scales
- ϕ_{13} Power of assembling unit is too low (0.8)

Application example: turbine fault diagnosis

Expert system with propositions

Blade of the turbine wears and tears ϕ_{14} Inlet gas temperature of turbine is too high (0.2) ϕ_{15} Blade of the turbine burns down φ_{16} Flow path of compressor wears and tears ϕ_{17} Compressor is in turbulence φ_{18} Blade of compressor breaks down (0) φ_{19} Conversion flow of the compressor is too low (0) φ_{20} Fuel consumption of assembling unit is too high (0.3) φ_{21} Inlet of compressor freezes φ_{22} Uniform entropy compression efficiency of compressor φ_{23} is too low (0) Compressor has a problem φ_{24} Spray head of turbine is broken φ_{25}

Application example: turbine fault diagnosis

```
and rules
```

```
R_1
        IF \varphi_1 AND \varphi_2 THEN \varphi_3 (0.8)
R_2 IF \phi_{25} AND NOT \phi_7 THEN \phi_6 (0.8)
R_3 IF \phi_{25} AND \phi_7 THEN \phi_8 (0.8)
R_4 IF \phi_0 AND \phi_{10} AND \phi_{11} THEN \phi_{12} (0.8)
R_5
        IF \varphi_{10} AND \varphi_{13} AND \varphi_2 THEN \varphi_{14} (0.8)
R_6 IF \varphi_2 AND \varphi_{15} THEN \varphi_{16} (0.8)
R_7 IF \phi_{17} THEN \phi_{18} (0.9)
R_8 IF \phi_{19} THEN \phi_{18} (1)
R_{\rm o}
        IF \phi_{20} AND \phi_5 AND \phi_{24} THEN \phi_{22} (0.8)
        IF \varphi_2 AND \varphi_{21} AND \varphi_{15} THEN \varphi_{24} (1)
R_{10}
R_{11}
        IF \phi_5 AND \phi_{23} THEN \phi_{12} (0.9)
R_{12} IF NOT \varphi_{20} AND NOT \varphi_5 AND \varphi_{24} THEN \varphi_{17} (0.8)
R_{13} IF \varphi_4 AND \varphi_2 AND \varphi_5 THEN \varphi_{25} (0.8)
```


References

- Mario J. Pérez-Jiménez et al. "Fuzzy reasoning spiking neural P systems revisited: A formalization". In: Theoretical Computer Science (2017). DOI: 10.1016/j.tcs.2017.04.014.
- Tao Wang, Gexiang Zhang, and Mario J. Pérez-Jiménez. "Fuzzy Membrane Computing: Theory and Applications". In: International Journal of Computers Communications & Control. With Emphasis on the Integration of Three Technologies 10.6 (2015), pp. 904–935. DOI: 10.15837/ijccc.2015.6.2080.