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Introduction

Phylogenetics is the study of
the evolutionary histories
(phylogenies) of groups of
organisms (or proteins, genes,
. . . )

Phylogenies are usually (but
not always) represented by
means of phylogenetic trees

Source: K. Lindblad-Toh et al, Nature 438, 803-819
(2005)



Introduction

Lamarck presented an evolutionary
tree of animals in 1809

Darwin drew an evolutionary tree in
1837 in his notebook



Introduction



Introduction
The tree of life according to The origin of species (1859)



Phylogenetic trees for
mathematicians



Phylogenetic trees
A phylogenetic tree on a set S (of OTU, Operational
Taxonomic Units: species, organisms, proteins, genes, . . . ) is
a rooted tree without elementary nodes and with its leaves
bijectively labeled in S

man cat chicken dinosaur lizard



Phylogenetic trees
A phylogenetic tree is a description of a (hypothetical)
evolutionary history of a set of OTU:
• The leaves represent the OTU under study
• The root represents their last common ancestor
• The internal nodes represent ancestors of the OTU under
study that are descendants of the root

• The edges represent the direct descendance
• Only speciation events given by mutations are taken into
account: every species has only one parent

man cat chicken dinosaur lizard



Counting binary trees
2 leaves: 1 tree

1 2

3 leaves: 3 trees

1 23 1 23 1 2 3



Counting binary trees
4 leaves: 15, because for each tree with 3 leaves

1 2 3

we can perform

1 4 2 3 1 4 2 3

1 42 3 1 42 3 1 42 3



Counting binary trees

Theorem
The number of binary (rooted) phylogenetic trees with n
leaves is

(2n − 3)!! := (2n − 3)(2n − 5)(2n − 7) · · · 5 · 3 · 1

(2 · 10− 3)!! = 34 459 425

(2 · 20− 3)!! ∼ 8.2 · 1021

(2 · 53− 3)!! ∼ 2.67 · 1082



Counting trees: the general case
We cannot use the previous argument to count all
phylogenetic trees with n leaves, because the number of places
(nodes or in the interior of edges) where we can add the new
leaf n varies from tree to tree

1 2 3

7 places

1 2 3

5 places



Counting trees: the general case
Tn,m: phylogenetic trees with n leaves and m internal nodes

Tn: phylogenetic trees with n leaves |Tn| =
n−1∑
m=1

|Tn,m|

Theorem

|Tn,m|=
{

m|Tn−1,m|+ (n + m − 2)|Tn−1,m−1| if m > 1
1 if m = 1

Closed formulas for |Tn,m| or |Tn| are not known, only
recurrences and generating functions



Clusters
The cluster C (v) of a node v is the set of the labels of its
descendant leaves

1 2 3 4 5

w

C (w) = {3, 4, 5}

In ‘aulde phylogenetic’, cluster=clade



Clusters
The family of clusters displayed by T = (V ,E ) is

C(T ) = {C (v) | v ∈ V }

1 2 3 4 5



Clusters
The family of clusters displayed by T = (V ,E ) is

C(T ) = {C (e) | e ∈ E}

1 2 3 4 5

C (T ) =
{
{1}, {2}, {3}, {4}, {5}



Clusters
The family of clusters displayed by T = (V ,E ) is

C(T ) = {C (e) | e ∈ E}

1 2 3 4 5

C (T ) =
{
{1}, {2}, {3}, {4}, {5}, {1, 2}



Clusters
The family of clusters displayed by T = (V ,E ) is

C(T ) = {C (e) | e ∈ E}

1 2 3 4 5

C (T ) =
{
{1}, {2}, {3}, {4}, {5}, {1, 2}, {1, 2, 3}



Clusters
The family of clusters displayed by T = (V ,E ) is

C(T ) = {C (e) | e ∈ E}

1 2 3 4 5

C (T ) =
{
{1}, {2}, {3}, {4}, {5}, {1, 2}, {1, 2, 3}, {4, 5}



Clusters
The family of clusters displayed by T = (V ,E ) is

C(T ) = {C (e) | e ∈ E}

1 2 3 4 5

C (T ) ={
{1}, {2}, {3}, {4}, {5}, {1, 2}, {1, 2, 3}, {4, 5}, {1, 2, 3, 4, 5}

}



Clusters

1 2 3 4 5

• v w if, and only if, C (w) ⊆ C (v)

• Each pair C (v), C (w) are compatible: If
C (v) ∩ C (w) 6= ∅, then C (v) ⊆ C (w) or C (v) ⊆ C (w)



Compatible clusters
Family of clusters of S : subset of P(S) containing S and all
singletons

A family of clusters C is compatible if its members are pairwise
compatible

Theorem
C = C(T ) for some phylogenetic tree T over S iff C is a
compatible family of clusters of S

Proof: ⇐) Draw the Hasse diagram of (C,⊆), root it at S ,
and label each {a} with a



Trees from compatible clusters
Example: S = {1, 2, 3, 4, 5}

C=
{
{1, 2, 3}, {4, 5}, {1, 2}, {1}, {2}, {3}, {4}, {5}, {1, 2, 3, 4, 5}

}

{1} {2} {3} {4} {5}

{1, 2} {4, 5}

{1, 2, 3}

{1, 2, 3, 4, 5}



Trees from compatible clusters
Example: S = {1, 2, 3, 4, 5}

C=
{
{1, 2, 3}, {4, 5}, {1, 2}, {1}, {2}, {3}, {4}, {5}, {1, 2, 3, 4, 5}

}

{1} {2} {3} {4} {5}

{1, 2} {4, 5}

{1, 2, 3}

{1, 2, 3, 4, 5}



Trees from compatible clusters
Example: S = {1, 2, 3, 4, 5}

C=
{
{1, 2, 3}, {4, 5}, {1, 2}, {1}, {2}, {3}, {4}, {5}, {1, 2, 3, 4, 5}

}

{1} {2} {3} {4} {5}

{1, 2} {4, 5}

{1, 2, 3}

{1, 2, 3, 4, 5}



Trees from compatible clusters
Example: S = {1, 2, 3, 4, 5}

C=
{
{1, 2, 3}, {4, 5}, {1, 2}, {1}, {2}, {3}, {4}, {5}, {1, 2, 3, 4, 5}

}

1 2 3 4 5



Clusters

Theorem
Let T ,T ′ be phylogenetic trees over S. If C(T ) = C(T ′), then
T ∼= T ′.

T ′6T (T refines T ′) when T ′ is obtained from T by
contracting edges

a

b

⇒ b

Theorem
Let T ,T ′ be phylogenetic trees over S. Then, C(T ′) ⊆ C(T )
iff T ′ 6 T.



Clusters

1 2 3 4 5
T

1 2 3 4 5

T ′

C(T )=
{
{1, 2, 3}, {4, 5}, {1, 2}, {1}, {2}, {3}, {4}, {5}, {1, 2, 3, 4, 5}

}
C(T ′)=

{
{1, 2, 3}, {1}, {2}, {3}, {4}, {5}, {1, 2, 3, 4, 5}

}



Incompatible clusters
What to do when C is incompatible?

• Remove a minimal subset of taxa such that C becomes
compatible: NP-hard (M. Steel, A. Hamel, Appl. Math.
Lett. 9 (1996), 55–60)

• Remove a minimal subset of clusters such that C becomes
compatible: NP-complete (finding maximal cliques)

• Forget about trees, look for multi-labeled trees or
phylogenetic networks

Where do incompatible clusters come?
• Taxonomic information from different sources

• Trying to reconcile a family of trees



Incompatible clusters
What to do when C is incompatible?

• Remove a minimal subset of taxa such that C becomes
compatible: NP-hard (M. Steel, A. Hamel, Appl. Math.
Lett. 9 (1996), 55–60)

• Remove a minimal subset of clusters such that C becomes
compatible: NP-complete (finding maximal cliques)

• Forget about trees, look for multi-labeled trees or
phylogenetic networks

Where do incompatible clusters come?
• Taxonomic information from different sources

• Trying to reconcile a family of trees



Mul-trees
A multi-labeled tree (mul-tree) on a set S is as a phylogenetic
tree, but with possibly repeated leaves

a b a c d

C(T ) =
{
{a, b}, {a, c}, {a, c , d}, . . .

}



Mul-trees
Example: Area cladograms, phylogenetic trees where species
at the leaves are replaced by regions

AF, Africa; AN, Antarctica; AU, Australia; M, Madagascar; SA, South America; SE,
the Seychelles; I, India and Sri Lanka

Source: C. Raxworthy et al. Nature 415 (2002), 784–787



Mul-trees
Example: Gene trees, which describe how genes have evolved
through duplications and mutations

Database: http://www.ebi.ac.uk/biomodels-main/

http://www.ebi.ac.uk/biomodels-main/


Mul-trees
Example: Gene trees, which describe how genes have evolved
through duplications and mutations

P P Z H M H R M



Incompatible clusters and mul-trees
• Every family of clusters C is displayed by (possibly) many
mul-trees, even if we take into account multiplicities

• Deciding whether there exists some mul-tree displaying C
with at most k > 1 duplications (repetitions of leaves) is
NP-hard

• Finding a mul-tree displaying C with the least number of
duplications is NP-hard. A few algorithms have been
proposed recently.

• Finding a minimal mul-tree displaying C is an open
problem



Triples

a b c

ab|c

T contains ab|c when LCA(a, b) < LCA(a, c) = LCA(b, c)

Γ(T ) = set of all triples contained in T



Triples

1 2 3 4 5

Γ(T ) = {12|3, 12|4, 12|5, 34|1, 34|2, 34|5}

1 2 3 4 5

Γ(T ) = {12|3, 12|4, 12|5, 34|1, 34|2, 34|5, 13|5, 14|5, 23|5, 24|5}



Triples

Proposition
The information in C(T ) and Γ(T ) are equivalent.

• ab|c ∈ Γ(T ) iff ∃C ∈ C(T ) such that a, b ∈ C and c /∈ C

• C ∈ C(T ) iff ab|c ∈ Γ(T ) for every a, b ∈ C and c /∈ C

Corollary
T ′ 6 T iff Γ(T ′) ⊆ Γ(T ). In particular, Γ(T ) singles out T
among all trees over S.



Trees from triples: Aho’s algorithm
Given a set Γ of triples over S , AG (Γ) = (V ,E ), where:
• V = S
• {a, b} ∈ E iff there exists some ab|c in Γ

Example:

S = {1, 2, 3, 4, 5, 6, 7}, Γ = {12|3, 12|5, 13|4, 35|4, 46|3}

1 2

3

4

5 6

7

AG (Γ)



Trees from triples: Aho’s algorithm
Given a set Γ of triples over S , let’s compute a tree AΓ over S
such that Γ = Γ(AΓ), if some exist:

• If |S | 6 2, AΓ is the tree with the elements of S as leaves
• If |S | > 3, compute AG (Γ)

• If AG (Γ) is connected, output Fail
• If AG (Γ) is not connected, for each node set U of a
connected component, recursively apply the algorithm to
Γ|U

• Create a root node r and make it the parent of the roots
of all AΓ|U



Trees from triples: Aho’s algorithm
Γ = {12|3, 12|5, 13|4, 35|4, 46|3}

1 2

3

4

5 6

7

AG (Γ)

U1 = {1, 2, 3, 5},U2 = {4, 6},U3 = {7}

4 6
AΓ|U2

7

AΓ|U3



Trees from triples: Aho’s algorithm
Γ|U1 = {12|3, 12|5}

1 2

3 5

AG (Γ|U1)

U1,1 = {1, 2},U1,2 = {3},U1,3 = {5}

1 2

AΓ|U1,1

3

AΓ|U1,2

5

AΓ|U1,3



Trees from triples: Aho’s algorithm

1 2 3 5

AΓ|U1

4 6

AΓ|U2

7

AΓ|U3

1 2 3 5 4 6 7

AΓ

Γ = {12|3, 12|5, 13|4, 35|4, 46|3}



Trees from triples: Aho’s algorithm
Γ = {12|3, 12|5, 13|4, 35|4, 46|3, 23|5, 15|3}

1 2

3

4

5 6

7

AG (Γ)

U1 = {1, 2, 3, 5}, Γ|U1 = {12|3, 12|5, 23|5, 15|3}

1 2

3 5

AG (Γ|U1)

Fail



Example
We found an obstruction:

1 2 3

12|3
1 2 5

12|5
2 3 5

23|5
1 5 3

15|3

LCA(1, 5) < LCA(3, 5) = LCA(2, 5) = LCA(1, 5)



Trees from triples: Aho’s algorithm

If Γ is compatible, AΓ is minimal containing Γ with this
property (if we contract any edge, the resulting tree does’nt
contain Γ)

If Γ is incompatible, the Aho algorithm reports fail



Incompatible triples
What to do when Γ is incompatible?

• Remove a minimal subset of triples such that Γ becomes
compatible: NP-hard (D. Bryant, PhD Thesis (1997))

• Usual heuristic: Determine a small cut set of edges in
AG (Γ), remove the corresponding triples, and continue

• Forget about trees, look for multi-labeled trees or
phylogenetic networks



Building phylogenetic trees



The reconstruction problem

Problem
Given information about a set of OTU, find a phylogenetic tree
representing an evolutionary history that best explains them

There are hundreds of algorithms and programs ‘solving’ this
problem in its different versions

A complete collection:
http://evolution.genetics.washington.edu/phylip/
software.html

Daily new contributions to the field, anyone is
welcome

http://evolution.genetics.washington.edu/phylip/software.html
http://evolution.genetics.washington.edu/phylip/software.html


From distances
Additive tree: weighted phylogenetic tree, whose weights
represent a quantitative measure of evolutionary divergence
(e.g., number of mutations, evolutionary time, etc.)

An additive tree defines an additive distance on the set of OTU

1 2 3 4 5

3
2

1

4 5 6 7
8

dT 1 2 3 4 5
1 0 9 16 17 17
2 0 17 18 18
3 0 13 15
4 0 16
5 0



From distances
Problem: Given a matrix of distances between OTU, find an
additive tree that defines an additive distance closest to the
input distance

NP-hard in most cases

Several popular heuristic “solutions” (yielding rooted or
unrooted trees)



From distances
Ultrametric tree: additive tree where all leaves are equidistant
from the root

1 2 3 4 5

4
3

2

3 3 2 2
4

Models molecular clock hypothesis (L. Pauling et al, 1960s):
The ‘speed’ of evolution is constant in all evolutionary
histories.

UPGMA (aka simple-linkage hierarchical clustering algorithm)
produces an ultrametric tree that is the closest sub-dominant
solution for ‖ ‖∞



From characters
Problem: Given descriptions of the OTU as vectors of
characters, find a simplest tree explaining them

These vectors of characters can be:
• Discrete, usually dichotomic, properties of organisms

Hair Lungs Oviparous Milk
Dog 1 1 0 1
Frog 0 1 1 0
Chicken 0 1 1 0
Salmon 0 0 1 0



From characters
Problem: Given descriptions of the OTU as vectors of
characters, find a simplest tree explaining them

These vectors of characters can be:
• Letters at aligned positions (by a multiple alignment) in
biomolecular sequences

Dog ACTTTAACTACT
Frog ACATTGACTGGT
Chicken AACGTACTTACT
Salmon AATTTCACTAAC



From sequences: Parsimony methods
Problem: Given biomolecular sequences, find a tree that
produces them from a single sequence through minimum
amount of evolution

Assigning sequences to internal nodes and weights to the
mutations represented by branches, we look for the tree with
smallest total weight (parsimony score)

Example: sequences ATCG, ATCC, ACCG

ATCG ATCC ACCG

ACCA

ACCC

1

2 2

1

score=6
ATCG ACCG ATCC

ACCA

ACCC

1

2 1

1

score=5



From sequences: Parsimony methods
Problem: Given biomolecular sequences, find a tree that
produces them from a single sequence through minimum
amount of evolution

Assigning sequences to internal nodes and weights to the
mutations represented by branches, we look for the tree with
smallest total weight (parsimony score)

Example: sequences ATCG, ATCC, ACCG

ATCC ACCG ATCG

ATCG

ATCG

0

1 1

0

The most parsimonious: score=2



From sequences: Parsimony methods
Problem: Given biomolecular sequences, find a tree that
produces them from a single sequence through minimum
amount of evolution

Given a fixed tree topology, sequences at the leaves, and a
matrix of mutation scores, the sequences at the internal nodes
minimizing the score can be computed in polynomial time
through dynamic programming (Sankoff algorithm,1983)

Finding the most parsimonious tree topology is NP-complete



From sequences: Parsimony methods
Solutions:
• For small n (6 10), exhaustive search in the space of all
binary trees with n leaves, computing for each one of
them its optimal score

• For large n:

• generate randomly many trees, compute their optimal
score, keep the most parsimonious

• modify them randomly through edit operations and keep
the modified trees if their score is smaller

• iterate this procedure several times

• Other heuristics . . .



From sequences: Likelihood methods
A phylogenetic tree can be considered as an stochastic
process: mutations are randomly applied to the sequences
along the edges, and speciation events occurr randomly at the
internal nodes

AACGA AACTA ATCAA CTCAG CTCCG

AACAA
ATAAG

CTCAG

AAAAA

Unobserved
Observed



From sequences: Likelihood methods
Additive phylogenetic trees as (simple) Markov models:

• Nodes are labeled with DNA sequences of fixed length m

• Only substitutions occur along the evolutionary process
(the length of the sequences remains constant)

• Each site(=nucleotide position) evolves independently of
the others

• Evolution along edges are independent of each other

• Each edge (u, v) has a weight tu,v measuring the
evolutionary time between the species associated with
nodes u and v



From sequences: Likelihood methods
The rate of substitution θy |x of x with y measures the rate at
which x changes into y per unit time

θ =


θA|A θC |A θG |A θT |A
θA|C θC |C θG |C θT |C
θA|G θC |G θG |G θT |G
θA|T θC |T θG |T θT |T


The probability P(y |x , t) that x changes into y within the
time t is obtained from θ

The model of evolution (Jukes-Cantor, Kimura, . . . ) provides
a distribution of probabilities (qA, qC , qG , qT ) at the root of
the tree and the probabilities P(y |x , t)



From sequences: Likelihood methods
Given a phylogenetic tree with all its nodes labeled with
sequences of length m, from these parameters we can compute
the probability of the tree

1 2 3

v

r

AC AG CG

TG

AG

T



From sequences: Likelihood methods
Given a phylogenetic tree with all its nodes labeled with
sequences of length m, from these parameters we can compute
the probability of the tree

1 2 3

v

r

A A C

T

A

T1

1 2 3

v

r

C G G

G

G

T2

P(T1)=qA · P(A|A, tr ,1) · P(T |A, tr ,v ) · P(A|T , tv ,2) · P(C |T , tv ,3)

P(T2)=qG · P(C |G , tr ,1) · P(G |G , tr ,v ) · P(G |G , tv ,2) · P(G |G , tv ,3)



From sequences: Likelihood methods
Given a phylogenetic tree with all its nodes labeled with
sequences of length m, from these parameters we can compute
the probability of the tree

1 2 3

v

r

A A C

T

A

T1

1 2 3

v

r

C G G

G

G

T2

P(T1)=qA · P(A|A, tr ,1) · P(T |A, tr ,v ) · P(A|T , tv ,2) · P(C |T , tv ,3)

P(T2)=qG · P(C |G , tr ,1) · P(G |G , tr ,v ) · P(G |G , tv ,2) · P(G |G , tv ,3)



From sequences: Likelihood methods
Given a phylogenetic tree with all its nodes labeled with
sequences of length m, from these parameters we can compute
the probability of the tree

1 2 3

v

r

A A C

T

A

T1

1 2 3

v

r

C G G

G

G

T2

P(T1)=qA · P(A|A, tr ,1) · P(T |A, tr ,v ) · P(A|T , tv ,2) · P(C |T , tv ,3)

P(T2)=qG · P(C |G , tr ,1) · P(G |G , tr ,v ) · P(G |G , tv ,2) · P(G |G , tv ,3)



From sequences: Likelihood methods
Given a phylogenetic tree with all its nodes labeled with
sequences of length m, from these parameters we can compute
the probability of the tree

1 2 3

v

r

AC AG CG

TG

AG

T

P(T ) = P(T1) · P(T2) = . . .



From sequences: Likelihood methods
Given a phylogenetic tree with only its leaves labeled with
sequences of length m, we can compute the probability of
observing these sequences at the leaves, by adding up the
probabilities of all trees obtained labeling the internal nodes

1 2 3

v

r

AC AG CG
T



From sequences: Likelihood methods
Given a phylogenetic tree with only its leaves labeled with
sequences of length m, we can compute the probability of
observing these sequences at the leaves, by adding up the
probabilities of all trees obtained labeling the internal nodes

1 2 3

v

r

AC AG CG

yb

xa

Txa,yb

P(T ) =
∑

xa,yb∈{A,C ,G ,T}2
P(Txa,yb)



From sequences: Likelihood methods
Problem: Given biomolecular sequences and an evolution
model, find a most probable additive tree that produces them
from a single sequence

Given a fixed additive tree and sequences at the leaves, the
most likely sequences at the internal nodes, maximizing the
probability of the tree, are computed in polynomial time by
means of dynamic programming (Felsenstein’s algorithm,
1981)

Finding an additive tree maximizing the probability is, of
course, NP-complete



From sequences: Likelihood methods
Solution:
• For small n (6 10),

• exhaustive search in the space of all trees with n leaves
• computing for each one of them the probability as a
function of the weights (tu,v )(u,v)∈E

• maximizing this function

• For large n, heuristic methods as in the maximum
parsimony problem.



From trees
Problem: Given a family of phylogenetic trees, find a
phylogenetic tree that represents as much evolutionary
information contained in them as possible

• Translate the trees into clusters or triples, and build a
phylogenetic tree from their union

• Several consensus supertrees heuristic methods

• Lots of recent work on: reconcile several gene trees into a
“species” tree



Phylogenetic networks



Lateral gene transfers
The whole genome of the Wolbachia bacterium is contained in
the genome of the fly D. Melanogaster

Source: J. C. D. Hotopp, M. E. Clark et al, Science 317 (2007), 1753–1756



Lateral gene transfers
• Insertion of a snake gene in the genome of ruminants 50
million years ago
D. Kordis, F. Gubensek, Eur. J. Biochem. 246 (1997), 772–779

• The mamal gene syncytin, key in the development of the
placenta, comes from a virus
J. P. Stoye, PNAS 106 (2009), 11827–1828

• The current distribution of genes seems to be a
consequence of copious horizontal gene transfers in early
evolutionary eras
T. Dagan, W. Martin, PNAS 104 (2007), 870–875

Database: HGT-DB (http://genomes.urv.cat/HGT-DB/)

http://genomes.urv.cat/HGT-DB/


Hybridizations



Hybridizations



Recombinations

Source: G. J. D. Smith, et al, Nature 459 (2009), 1122–1125



The tree of life. . .

Source: W. F. Doolittle, Science 284 (1999), 2124–2128



The tree of life is not a tree

Source: W. F. Doolittle, Science 284 (1999), 2124–2128



Phylogenetic network
A phylogenetic network is, roughly, any graph that represents
an evolutionary history (directed) or evolutionary closeness
(undirected)

There are many specific definitions, imposing further
conditions on the graph

Source: D. H. Huson, D. Bryant, Molecular Biology and Evolution 23 (2006), 254–267



Reticulate networks

Definition
A reticulate network over S is an rDAG N = (V ,E ) without
elementary nodes and with its leaves bijectively labelled in S

• tree nodes : din 6 1 y
dout 6= 1

Represent species or mutations

• reticulations : din > 1

Represent species obtained
through reticulate events, or the
reticulate events themselves

1 2 3 4



Clusters in reticulate networks
Let N = (V ,E ) be a phyl. network over S

For every node v , let

C (v) = labels of descendant leaves of x

The family of clusters displayed (in the hardwired sense) by N
is

C(N) = {C (v) | v ∈ V is a tree node}



Clusters in reticulate networks

1 2 3 4 5 6

C (N) =
{
{1}, {2}, {3}, {4}, {5}, {6}, {1, 2},
{1, 2, 3, 4}, {3, 4, 5, 6}, {1, 2, 3, 4, 5, 6}

}



Clusters in reticulate networks

1 2 3 4 5 6

C (N) =
{
{1}, {2}, {3}, {4}, {5}, {6}, {1, 2}, {3, 4},
{1, 2, 3, 4}, {3, 4, 5, 6}, {1, 2, 3, 4, 5, 6}

}



Clusters in reticulate networks

1 2 3 4 5 6

• If v w , then C (w) ⊆ C (v)

• C (v) ∩ C (w) 6= ∅ does not imply C (v) ⊆ C (w) or
C (w) ⊆ C (v)



Clusters in reticulate networks

1 2

• C (w) ⊆ C (v) does not imply v w



Cluster networks
A cluster network on S is an S-rDAG G such that:

1 Every reticulation has exactly one child, and it is a tree
node

2 If C (w) ( C (v), then v w

3 C (v) = C (w) iff v = w or they are a reticulation and its
only child

4 If (v ,w) ∈ E , then there exists no u ∈ V such that
C (w) ( C (u) ( C (v)

v

u

w



Computing cluster networks
Given a family C of clusters of S containing all singletons, a
cluster network NC (C) such that C(NC (C)) = C can be
obtained as follows:

Cluster-popping algorithm:
1 Draw the Hasse diagram of (C ∪ {S},⊆) and root it at S
2 Insert additional tree edges with source reticulations to

ensure (1)
3 Label leaves with the corresponding taxa



Computing cluster networks
Example: S = {1, 2, 3, 4, 5}
C=

{
{1, 2, 3}, {3, 4, 5}, {1, 2}, {1}, {2}, {3}, {4}, {5}

}

{1} {2} {3} {4} {5}

{1, 2}

{1, 2, 3} {3, 4, 5}

{1, 2, 3, 4, 5}



Computing cluster networks
Example: S = {1, 2, 3, 4, 5}
C=

{
{1, 2, 3}, {3, 4, 5}, {1, 2}, {1}, {2}, {3}, {4}, {5}

}

{1} {2} {3} {4} {5}

{1, 2}

{1, 2, 3} {3, 4, 5}

{1, 2, 3, 4, 5}



Computing cluster networks
Example: S = {1, 2, 3, 4, 5}
C=

{
{1, 2, 3}, {3, 4, 5}, {1, 2}, {1}, {2}, {3}, {4}, {5}

}

{1} {2} {3} {4} {5}

{1, 2}

{1, 2, 3} {3, 4, 5}

{1, 2, 3, 4, 5}



Computing cluster networks
Example: S = {1, 2, 3, 4, 5}
C=

{
{1, 2, 3}, {3, 4, 5}, {1, 2}, {1}, {2}, {3}, {4}, {5}

}

1 2 3 4 5



Computing cluster networks

Theorem
NC (C) is a cluster network and NC (C) = C.

Theorem
Let N,N ′ be cluster networks. If C(N) = C(N ′), then N ∼= N ′.



Embeddings
A phylogenetic tree T is represented by a reticulate network N
when it can be obtained from N by deleting, in every
reticulation, all incoming edges but one, and then suppressing
elementary nodes

1 2 3 4 5

↪→

1 2 3 4 5



Cluster network as consensus

Theorem
Let T be a family of trees over S. Then, NC (C(T )) represents
a refinement of every tree in T .



Cluster network as consensus

Theorem
Let T be a family of trees over S. Then, NC (C(T )) represents
a refinement of every tree in T .

1 2 3 4 5 1 5 4 2 3 1 2 3 4 5

Refinement cannot be avoided in the statement

Active problem: Find a reticulate network (possibly with extra
properties) that represents a family of trees



Hardwired and softwired clusters
Let N be a reticulate network over S , and C ⊆ S .
• C ∈ C(N) iff C = CN(v) for some tree node v
• C ∈ Csoft(N) iff C = CT (v) for some node v in a tree T
represented by N

N represents C in the hardwired sense if C ⊆ C(N)

N represents C in the softwired sense if C ⊆ Csoft(N)

Every tree node in N represents only one cluster in the
hardwired sense, but may represent several clusters in the
softwired sense



Hardwired and softwired clusters

1 2 3 4 5

C(N) =
{
{1}, {2}, {3}, {4}, {5}, {1, 2}, {3, 4}, {4, 5},
{1, 2, 3, 4}, {3, 4, 5}

}



Hardwired and softwired clusters

1 2 3 4 5

Csoft(N) =
{
{1}, {2}, {3}, {4}, {5}, {1, 2}, {4, 5}, {3, 4, 5}



Hardwired and softwired clusters

1 2 3 4 5

Csoft(N) =
{
{1}, {2}, {3}, {4}, {5}, {1, 2}, {4, 5}, {3, 4, 5}
{3, 4}



Hardwired and softwired clusters

1 2 3 4 5

Csoft(N) =
{
{1}, {2}, {3}, {4}, {5}, {1, 2}, {4, 5}, {3, 4, 5}
{3, 4}, {1, 2, 3}



Hardwired and softwired clusters

1 2 3 4 5

Csoft(N) =
{
{1}, {2}, {3}, {4}, {5}, {1, 2}, {4, 5}, {3, 4, 5}
{3, 4}, {1, 2, 3}, {1, 2, 3, 4}

}



Hardwired and softwired clusters

Proposition
C(N) ⊆ Csoft(N)



Hardwired and softwired clusters
If N represents T , then C(T ) ⊆ Csoft(N), but not necessarily
C(T ) ⊆ C(N)

1 2 3 4 5

T1

1 2 3 4 5

T2

1 2 3 4 5

N



Hardwired and softwired clusters
N representing softwired C(T ) need not represent T

1 2 3 4 5

T1

1 2 3 4 5

T2

4 2 1 3 5

T3

1 2 3 4 5

N



Triples in a network
A triple ab|c is embedded in a reticulate network N = (V ,E )
when there exist u, v ∈ V and paths u c , u v , v a and
v v that are node-disjoint (except at their end-points)

1 2 3 4



Triples in a network
A triple ab|c is embedded in a reticulate network N = (V ,E )
when there exist u, v ∈ V and paths u c , u v , v a and
v v that are node-disjoint (except at their end-points)

1 2 3 4

13|2



Triples in a network
A triple ab|c is embedded in a reticulate network N = (V ,E )
when there exist u, v ∈ V and paths u c , u v , v a and
v v that are node-disjoint (except at their end-points)

1 2 3 4

23|1



Triples in a network
There exist reticulate networks containing all triples over S

1 2 3 4



Restrictions
Most problems related to general reticulate networks are hard:

• The isomorphism problem is believed to lie in NP−P
• Deciding whether a reticulate network represents in the
softwired sense a given cluster (Cluster containment
problem) is NP-complete

• Deciding the minimum number of reticulations in a
reticulate network representing in the softwired sense a
given family of clusters is NP-complete

• Deciding the minimum number of reticulations in a
reticulate network representing in the softwired sense a
given family of triples is NP-complete

• . . .



Restrictions
A solution is to restrict the class of reticulate networks

Several restricted classes have been introduced so far, some
with biological meaning, some artificial but useful

11 such “simple” restrictions are discussed in:
• http://phylonetworks.blogspot.com.es/2013/03/
different-topological-restrictions-of.html

• http://phylonetworks.blogspot.com.es/2013/03/
topological-restrictions-some-comments.html

http://phylonetworks.blogspot.com.es/2013/03/different-topological-restrictions-of.html
http://phylonetworks.blogspot.com.es/2013/03/different-topological-restrictions-of.html
http://phylonetworks.blogspot.com.es/2013/03/topological-restrictions-some-comments.html
http://phylonetworks.blogspot.com.es/2013/03/topological-restrictions-some-comments.html


Reticulation cycles
A reticulation cycle for a reticulate node H is any pair of paths
ending in H with the same origin and no other node in
common

A

B

1 2 3 4

1 reticulation cycle for A, 2 for B



Galled trees
A reticulate network is a galled tree when every pair of
reticulation cycles have disjoint sets of edges

1 2 3 4 5 6 7 8

A galled tree



Galled trees
A reticulate network is a galled tree when every pair of
reticulation cycles have disjoint sets of edges

1 2 3 4 5

A galled tree



Galled trees
A reticulate network is a galled tree when every pair of
reticulation cycles have disjoint sets of edges

1 2 3 4 5 6 7 8

Not a galled tree



Tree-child networks
A reticulate network is a tree-child network when reticulations
have exactly one (tree) child and every internal node has some
tree child

1 2 3 4 5 6 7 8

A tree-child network



Properties of tree-child networks
• Every galled tree with out-degree 1 reticulations is
tree-child

• Every reticulate node is a strict ancestor of all its
descendants

• The cluster containment problem can be solved in
polynomial time

• The isomorphism problem can be solved in polynomial
time



Reconstruction of restricted networks
• Polynomial-time algorithm that computes a galled tree
that represents (in the softwired or in the hardwired
sense) a given family of clusters, if one exists

• Polynomial-time algorithm that computes a galled tree
that represents a given family of dense triples, if one
exists

• The non-dense case is open

• Polynomial-time algorithm that computes a tree-child
network that represents (in the softwired or in the
hardwired sense) a given family of clusters, if one exists

• The reconstruction of tree-child networks from triples is
an open problem (we are working on it)



Reconstruction of phylogenetic networks

A very active field or research

A further important problem: Interpreting the reticulations

Who’s who in phylogenetic networks:
http://www2.lirmm.fr/~gambette/PhylogeneticNetworks/

http://www2.lirmm.fr/~gambette/PhylogeneticNetworks/
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