
Networks of Bio-Inspired
Processors.

José M. Sempere

Research Group on Computation Models and Formal Languages

Departmento de Sistemas Informáticos y Computación

Universitat Politècnica de València

1. General ingredients and components

2. Networks of Evolutionary Processors (NEPs)

3. Networks of Splicing Processors (NSPs)

4. Networks of Genetic Processors (NGPs)

5. Towards a full general model

Networks of Bio-Inspired Processors.

A NBP is a computational model which

… is inspired by biological aspects (darwinian evolution, DNA
recombination, etc.)

… is computationally complete (it has the computation power of a
Turing machine)

… is parallel and distributed

… is universal (allows the interpretation of NBPs as source data)

… solves NP-complete problems in “polynomial” time

Networks of Bio-Inspired Processors.

Computationally complete and universal

Parallel and distributed

Works with strings

Hardware implementations

Works with multisets of data

Software simulators

In vitro/in vivo implementations

Efficient solutions to hard problems

Networks of Bio-Inspired Processors. An introduction

P systems NBPs

OK OK

OK OK

OK OK

OK+KO OK + KO

OK OK

OK OK + KO

KO KO

OK OK

From NEPs to P Systems ���� Evolutionary P systems (Mitrana, Sempere 2009)

From P Systems to NBPs ���� Open problem

Networks of Bio-inspired Processors

Some bioinspired operators over strings and languages

Insertion Insert a symbol into a string aaaaa � aabaaa

Deletion Delete a symbol from a string aabaaa � aaaaa

Substitution (mutation) Substitute a symbol into a string aaaaa � aabaa

Splicing Splicing rules r=(u1#u2$v1#v2) r=(a#a$b#b) (abcdaa,bbabcd) � (abcdababcd,ba)

Crossover Full massive splicing with empty context aa bb � λ, bb, abb, aabb, ab, aab, …

Hairpin completion Hairpin completion from folded strings

Superposition Complementarity completion from double stranded strings

loop and double loop recombination DNA recombination based on gene assembly

inversion, duplication and transposition DNA fragments modification (operations on substrings)

… etc, etc.

><

Networks of Bio-inspired Processors

A finite set of processors that apply operations over strings which have been inspired by

biomolecular functions and operations in the nature. The processors work with a multiset of

strings.

A connection topology between processors in the form of a network.

A set of (input/output) filters which can be attached to the processors or to the connections.

The ingredients to define a Network of Bioinspired Processors

permitted

forbidden

input output

a → b

aaa

bbab

Networks of Evolutionary
Processors

Networks of Bio-Inspired Processors

Accepting Networks of Evolutionary Processors

An evolutionary processor over V is a 5-tuple (M,PI,FI,PO,FO),where:

Either M SubV or M DelV or M InsV

The set M represents the set of evolutionary rules of the processor.

PI,FI V are the input permitting/forbidding contexts of the processor

PO,FO V are the output permitting/forbidding contexts of the processor

(with PI FI= and PO FO=)

We can define the following predicated for the filters

⊆ ⊆ ⊆

⊆

⊆

∩ ∅ ∩ ∅

rcs(z;P, F) ≡ [P ⊆ alph(z)]∧[F ∩alph(z) = ∅]

rcw(z;P, F) ≡ [alph(z)∩ P = ∅]∧[F ∩ alph(z) = ∅]

Networks of Bio-Inspired Processors

Accepting Networks of Evolutionary Processors

where

V and U are the input and network alphabets

G=(XG,EG) is an undirected graph without loops

N: XG � EPU associates an evolutionary processor to every node in G

α: XG � {l,r,*} associates an action mode to every node (Hybrid networks)

β: XG � {s,w} associates a filter predicate to every node

xI,xO are the input and output nodes

Γ = (V,U,G, N,α, β, xI , xO)

Networks of Bio-Inspired Processors

Accepting Networks of Evolutionary Processors

Γ = (V,U,G, N,α, β, xI , xO)

How does the network work ?

(I) Evolutionary steps

Ci ⇒⇒⇒⇒ Ci+1

• Every rule that can be applied is massively applied

• No competition between rules. All the rules are applied by using different copies

(II) Communication steps

Ci aaaa Ci+1

• Every processor sends all the filtered strings to its neighbours

• Every processor receives and stores filtered strings

• Strings that are sent but not received are lost

(III) Network at work

C0 ⇒⇒⇒⇒ C1 aaaa C2 ⇒⇒⇒⇒ C3 aaaa C4 ...

Networks of Bio-Inspired Processors

Accepting Networks of Evolutionary Processors

Γ = (V,U,G, N,α, β, xI , xO)

Accepted language

1. There exists a configuration in which the set of words existing in the output node x
O

is

non-empty. (halting and accepting computation)

2. There exist two consecutive identical configurations. (halting and rejection computation)

3. It works forever.

L(Γ)={w ∈ V* : the computation of Γ on w is an accepting one}.

Networks of Bio-Inspired Processors

Generating Networks of Evolutionary Processors

Γ = (V,U,G, N,α, β, xI , xO)

Generated language

1. No specific halting configuration

2. The output node x
O

collects a (possibly infinite) set of words

G(Γ)={w ∈ V* : w eventually enters into the output node}.

Let Loracle be a language (the oracle language)

PIn = Loracle#

POn = {0,1}

An = { 0 }

Mn = { a →→→→ εεεε, # →→→→ 1, εεεε →→→→ 0 }

Nn

NnN

(1) N sends the query x#

NnN

(2) If x# passes the input filter then x# ∈ Loracle#

x →

x

NnN

(3) Nn transforms the query x# into 1

1

NnN

(4) Nn sends the answer

← 1,0 / 0

Networks of Bio-Inspired Processors

Γ = (V,U,G, N,α, β, xI , xO)

Building oracles with (A/G)NEPs

Theorem (Castellanos, Martín-Vide, Mitrana, Sempere 2003)

Every RE language can be generated by a complete NEP with 5 processors.

Theorem (Castellanos, Martín-Vide, Mitrana, Sempere 2003)

Every RE language can be generated by a star NEP with 5 processors.

Theorem (Castellanos, Martín-Vide, Mitrana, Sempere 2003)

Every RE language can be generated with a ring NEP with 6 processors.

Theorem

Every language in the Arithmetic Hierarchy can be generated by a complete/star/ring NEP.

(here the number of processors depends on the network topology and the oracle language)

The Arithmetic Hierarchy

ΣΣΣΣ0 = REC ΣΣΣΣn+1 = A-r.e. con A ∈∈∈∈ ΣΣΣΣn

ΠΠΠΠn = co-ΣΣΣΣn ∆∆∆∆n = ΣΣΣΣn ∩∩∩∩ ΠΠΠΠn

Networks of Bio-Inspired Processors

GNEPs completeness and beyond Turing’s limit

Networks of Splicing Processors

DNA Recombination and Splicing

5’ – CCCCCTCGACCCCC – 3’

3’ – GGGGGAGCTGGGGG – 5’

5’ – AAAAAGCGCAAAAA – 3’

3’ – TTTTTCGCGTTTTT – 5’

5’ – TTTTTGCGCTTTTT – 3’

3’ – AAAAACGCGAAAAA – 5’

double strands

T C G A

A G C T

TaqI

G C G C

C G C G

SciNI

G C G C

C G C G

HhaI

restriction enzimes (endonuclease)

5’ – CCCCCT CGACCCCC – 3’

3’ – GGGGGAGC TGGGGG – 5’

5’ – AAAAAG CGCAAAAA – 3’

3’ – TTTTTCGC GTTTTT – 5’

5’ – TTTTTGCG CTTTTT – 3’

3’ – AAAAAC GCGAAAAA – 5’

5’ – CCCCCTCGCAAAAA – 3’

3’ – GGGGGAGCGTTTTT – 5’

5’ – AAAAAGCGACCCCC – 3’

3’ – TTTTTCGCTGGGGG – 5’ligases

Splicing over strings (Types I and II)

T C G A

A G C T

TaqI

C C G C

G G C G

SciNI

G C G G

C G C C

HhaI

Patterns (T, CG, A) (C,CG,C) (G,CG,G)
Class I Class II

w1 = w’1 u1 x1 v1 w”1

w2 = w’2 u2 x2 v2 w”2

p1 = (u1 , x1 , v1)
p2 = (u2 , x2 , v2)

The splicing only occurs if p1 and p2 are of the same class and x1=x2

z1 = w’1 u1 x1 v2 w”2

z2 = w’2 u2 x2 v1 w”1

Splicing over strings (Types I and II)

w1 = w’1 u1 x1 v1 w”1

w2 = w’2 u2 x2 v2 w”2

p1 = (u1 , x1 , v1)
p2 = (u2 , x2 , v2)

The patterns (p1, p2) can be denoted as (u1, u2; u3,u4) or as the string u1#u2$u3u4.

z1 = w’1 u1 x1 v2 w”2

z2 = w’2 u2 x2 v1 w”1

Type I splicing operation

(x,y) ├─r z iff x=x1u1u2x2,
y=y1u3u4y2,

z=x1u1u4y2,

Type II splicing operation

(x,y) ╞═r (z,w) iff x=x1u1u2x2,
y=y1u3u4y2,

z=x1u1u4y2,
w= y1u3u2x2

Let r=u1#u2$u3u4 be an splicing rule, then we can define the following operations

H schemes

σ = (V, R) where

V an alphabet
R ⊆ V*#V*$V*#V* a set of splicing rules

If R belongs to the family of languages L then σ is of type L

∀ L ⊆ V*

σ1(L) = { z ∈ V* : (x,y)├─r z, x,y ∈L, r ∈ R }

σ1(x,y) = { z ∈ V* : (x,y)├─r z, r ∈ R }

σ1(L) = ∪ σ1(x,y)
x,y ∈L

Language classes denoted by the H schemes
(the noniterative case)

σ = (V, R)

S1(L1,L2) = { σσσσ1(L) : L ∈∈∈∈ L1, R ∈∈∈∈ L2 }

L1 is closed under splicing of type L2 if S1(L1 , L2) ⊆⊆⊆⊆ L1

Lemma For all the families of languages L1 , L2 , L’1 , L’2 such that
L1 ⊆⊆⊆⊆ L’1 and L2 ⊆⊆⊆⊆ L’2 the inclusion S1(L1 , L2) ⊆⊆⊆⊆ S1(L’1 , L’2) holds.

FIN REG LIN CF CS RE

FIN FIN FIN FIN FIN FIN FIN

REG REG REG REG, LIN REG, CF REG, RE REG, RE

LIN LIN, CF LIN, CF RE RE RE RE

CF CF CF RE RE RE RE

CS RE RE RE RE RE RE

RE RE RE RE RE RE RE

S1(L1,L2)

L1

L2

Language classes denoted by the H systems
(the noniterative case)

σ = (V, R) L ⊆ V*

σ1(L) = { z ∈ V* : (x,y)├─r z, x,y ∈L, r ∈ R }

σ0
1(L) = L

σi+1
1(L) = σi

1(L) ∪ σ1(σ
i
1(L)), i ≥ 0

σ*1(L) = ∪ σi
1(L)

i ≥ 0

H1(L1,L2) = { σ*1(L) : , L ∈ L1, R ∈ L2 }

Language classes denoted by the H schemes
(the iterative case)

FIN REG LIN CF CS RE

FIN FIN, REG FIN, RE FIN, RE FIN, RE FIN, RE FIN,RE

REG REG REG, RE REG, RE REG, RE REG, RE REG, RE

LIN LIN, CF LIN, RE LIN, RE LIN, RE LIN, RE LIN, RE

CF CF CF, RE CF, RE CF, RE CF, RE CF, RE

CS CS, RE CS, RE CS, RE CS, RE CS, RE CS, RE

RE RE RE RE RE RE RE

H1(L1,L2)

L1

L2

Language classes denoted by the H systems
(the iterative case)

Extended H Systems

σ = (V, R) is an H scheme L ⊆ V* is a language

L(γ) = σ*1(L)

γ = (V, L, R) is a H system

γ = (V, T, A, R) is an extended H system

V is an alphabet
T ⊆ V is an alphabet of terminal symbols
A ⊆ V* is a set of axioms
R ⊆ V*#V*$V*#V* is a set of splicing rules

L(γ) = σ*1(A) ∩ T*

EH1(L1,L2) = { L(γ) : A ∈ L1, R ∈ L2 }

FIN REG LIN CF CS RE

FIN REG RE RE RE RE RE

REG REG RE RE RE RE RE

LIN LIN, CF RE RE RE RE RE

CF CF RE RE RE RE RE

CS RE RE RE RE RE RE

RE RE RE RE RE RE RE

EH1(L1,L2)

L1

L2

Language classes denoted by the extended H systems

Extended H systems with permitting contexts

γ = (V, T, A, R) is an extended H system

R is a finite set of 3-tuples in the form
p = (r; C1, C2) r = u1#u2$u3#u4

C1, C2 ⊆ V* (finite)

(x,y) ╞═p (z,w) iff (x,y) ╞═r (z,w)
every element in C1 appears in x
every element in C2 appears in y

L(γ) = σ*2(A) ∩ T*

Lemma: RE ⊆ EH2(FIN,pFIN)

set of axioms A

sets of permitting contexts C1 and C2

Splicing processors

Choudhary & Krithivasan, 2007

A splicing processor over V is a 8-tuple (M,S,A,PI,FI,PO,FO,β),where:

M is a set of splicing rules with permitting context
S is a finite set of strings over V
A is a finite set of axioms over V
PI,FI V are the input permitting/forbidding contexts of the processor
PO,FO V are the output permitting/forbidding contexts of the processor
(with PI FI= and PO FO=)
β {(1),(2)} defines the input/output filter

We can define the following predicates for the filters

⊆

⊆

∩ ∩∅ ∅

∈

rc(1)(z;P, F) ≡ [P ⊆ alph(z)]∧[F ∩alph(z) = ∅]

rc(2)(z;P, F) ≡ [alph(z)∩P ≠ ∅]∧[F ∩alph(z) = ∅]

Splicing processors

Manea, Martín-Vide & Mitrana, 2005

A splicing processor over V is a 6-tuple (S,A,PI,FI,PO,FO),where:

S is a finite set of splicing rules over V
A is a finite set of auxiliary words over V
PI,FI V are the input permitting/forbidding contexts of the processor
PO,FO V are the output permitting/forbidding contexts of the processor
(with PI FI= and PO FO=)

We can define the following predicates for the filters

⊆

⊆

∩ ∩∅ ∅

rc(1)(z;P, F) ≡ [P ⊆ alph(z)]∧[F ∩alph(z) = ∅]

rc(2)(z;P, F) ≡ [alph(z)∩P ≠ ∅]∧[F ∩alph(z) = ∅]

Networks of Splicing Processors (NSPs)

Choudhary & Krithivasan, 2007

A NSP of size n is a tuple (V,N1,N2, …, Nn,G),where:

V is an alphabet
Ni is the ith splicing processor
G is an undirected graph without loops (the underlying topology of the
network)

• The configuration of the network consists of the strings at every processor (excluding the
axioms for the splicing rule)

• The network evolves as in the Networks of Evolutionary Processors (NEPs) with splicing
steps and communication steps

• There exists an output processor which collects the strings as the product of a computation
sequence

• The network halts whenever no splicing operation can be carried out and no string can be
communicated

Accepting Networks of Splicing Processors (ANSPs)

Manea, Martín-Vide & Mitrana, 2005

An ANSP is a 9-tuple (V,U,<,>,G,N,α,xI,xO),where:

V,U are the input and network alphabets
<,> U\V are special symbols
G=(XG,EG) is an undirected graph without loops (the underlying topology of the
network)
N: XG � SPU associates to each node in the graph a splicing processor over U
α: XG � {(1),(2)} defines the type of filter at every processor
xI,xO XG are the input and output processors

∈

∈

• The configuration of the network consists of the strings at every processor

• The network evolves as in the Networks of Evolutionary Processors (NEPs) with splicing
steps and communication steps

• The input processor initially holds the string to be analyzed

• The network halts whenever: (1) a string enters into the output processor (accepting
computation) or, (2) There exists two identical configurations obtained either in consecutive
splicing steps or in consecutive communication steps (not an accepting computation)

(A)NSPs are computationally complete

Choudhary & Krithivasan, 2007

Theorem. Each recursively enumerable language can be generated by a
complete NSP of size two where the splicing rules are of type regular.

Simulate a type 0 Chomsky grammar which works in the same
way as the EH2(FIN,pFIN) system

(A)NSPs are computationally complete

Simulate the movements of a Turing machine with a number of
processors that linearly depends on the size of the alphabet
and states of the Turing machine

Manea, Martín-Vide & Mitrana, 2005

Theorem. For any Turing machine M there exists an ANSP that accepts
exactly the same language as M does.

(A)NSPs are computationally complete

The nondeterministic Turing machine associates every state to
a node in the ANSP. The splicing rules and evolution strings are
nondeterministically chosen. Whenever the Turing machine
enters into the state which is associated to the output node,
then it halts and accepts the input word.

Manea, Martín-Vide & Mitrana, 2005

Theorem. For any ANSP ΓΓΓΓ, accepting the language L, there exists a
Turing machine M that accepts the same language L.

Complexity issues

Manea, Martín-Vide & Mitrana, 2007

Introducing time complexity measures

We consider an ANSP Γ with the input alphabet V that halts on
every input. The time complexity of the computation

C0(x), C1(x), C2(x) , . . . ,Cm(x)
of Γ on x is denoted by TimeΓΓΓΓ(x) and equals m.

For a function f : N � N we define

TimeANSP(f (n)) = {L | L = L(ΓΓΓΓ) for an ANSP Γ Γ Γ Γ with TimeΓΓΓΓ (n) ≤≤≤≤ f (n) for
some n ≥≥≥≥ n0}.

The time complexity of Γ is the partial function from N to N,

TimeΓΓΓΓ (n) = max{Time ΓΓΓΓ(x) | |x| = n}.

U
0

)(
≥

=
k

k

ANSPANSP nTimePTime

Complexity issues

Manea, Martín-Vide & Mitrana, 2007

Complexity results

Proposition. If L ∈∈∈∈ NP then L ∈∈∈∈ PTimeANSP.

Proposition. If L ∈∈∈∈ PTimeANSP then L ∈∈∈∈ NP.

PTimeANSP = NP

Complexity issues

Manea, Martín-Vide & Mitrana, 2007

Introducing space complexity measures

The length complexity of the computation
C0(x), C1(x), C2(x) , . . . ,Cm(x)

of Γ on x is denoted by LengthΓΓΓΓ(x) and equals to
max{ |w| : w ∈ Ci(x) : 1 ≤ i ≤ m}.

For a function f : N � N we define

LengthANSP(f (n)) = {L | L = L(ΓΓΓΓ) for an ANSP Γ Γ Γ Γ with LengthΓΓΓΓ (n) ≤≤≤≤ f (n)
for some n ≥≥≥≥ n0}.

The length complexity of Γ is the partial function from N to N,

LengthΓΓΓΓ (n) = max{Length ΓΓΓΓ(x) | |x| = n}.

U
0

)(
≥

=
k

k

ANSPANSP nLengthPLength

Complexity issues

Manea, Martín-Vide & Mitrana, 2007

Complexity results

Proposition. If L ∈∈∈∈ PSPACE then L ∈∈∈∈ PLengthANSP.

Proposition. If L ∈∈∈∈ PLengthANSP then L ∈∈∈∈ PSPACE.

PLengthANSP = PSPACE

Networks of Genetic Processors

Networks of Genetic Processors

From ANEPs and ANSPs to Accepting Networks of Genetic Processors (ANGPs)

Substitute evolutionary operations or splicing rules by

(a) Mutation operations

baaaa

abaaa

aaaaa aabaa

aaaba

aaaab

(b) Crossover between strings

x y = { x1y2, y1x2 : x=x1x2, y = y1y2 }

a→ b

><

cd cd cd

ab cd,ab d,cab λ,cdab

ab acd, b ad,cb λ,cdb

ab abcd, λ abd,c ab,cd

Networks of Genetic Processors

From ANEPs and ANSPs to Accepting Networks of Genetic Processors (ANGPs)

Some important remarks:

(1) NEPs with only substitution (mutation) processors are not computationally

complete

(2) NSPs with empty contexts (crossover) are not computationally complete

Combine mutation and crossover to …

(1) achieve computation completeness

(2) Connect Networks of Bio-Inspired Processors with Genetic Algorithms

Networks of Genetic Processors

Accepting Networks of Genetic Processors (I)

A genetic processor over V is a 5-tuple (MR,A,PI,FI,PO,FO,α,β),where:

• MR is a finite set of mutation rules over V (a � b)

• A is a multiset of strings over V with finite support and an arbitrary large

number of copies of every string

• PI,FI V* are finite sets of input permitting/forbidding contexts

• PO,FO V* are finite sets of output permitting/forbidding contexts

• α {(1),(2)} defines the function mode such that

(1) means only mutation operations

(2) means crossover operations (MR =)

• β {(1),(2)} defines the filter predicates

(1)

(2)

⊆

⊆

∈

∅

rcs(z;P, F) ≡ [P ⊆ seg(z)]∧[F ∩seg(z) = ∅]
])([])([),;(∅=∩∧∅≠∩≡ zsegFPzsegFPzrcw

∈

Networks of Genetic Processors

Accepting Networks of Genetic Processors (II)

ANGP of size n is a tuple

where V is an alphabet

G=(XG,EG) is an undirected graph without loops

Ni (1 ≤ i ≤ n) is a genetic processor over V

Ν: XG � {N1,N2,…,Nn} associates a genetic processor to every node in

the graph

Γ = (V, N1, N2,..., Nn,G, N)

How does the network work ?

(I) Genetic steps

Ci ⇒⇒⇒⇒ Ci+1

• Every rule that can be applied is massively applied

• No competition between rules. All the rules are applied by

using different copies

(II) Communication steps

Ci aaaa Ci+1

• Every processor sends all the filtered strings to its neighbours

• Every processor receives and stores filtered strings

• Strings that are sent but not received are lost

(III) Network at work C0 ⇒⇒⇒⇒ C1 aaaa C2 ⇒⇒⇒⇒ C3 aaaa C4 ...

SAME ACCEPTANCE CRITERION AS IN THE EVOLUTIONARY CASE

Networks of Genetic Processors

Theorem: ANGPs are computationally complete

M = (Σ, Γ,Q,δ,q0, B,Qf)

From deterministic Turing machines …. to ANGPs

αqaβinstantaneous description encoded instantaneous description qα$aβF

movement to the right δ(q,a)=(p,b,R) dedicated processor NqaR

movement to the right δ(q,a)=(p,b,L) a couple of dedicated processors for every c

NqacL1 NqacL2

visit to a new rightmost cell a couple of dedicated processors

NB NB2

q → p

$ → b'

a→ $

q → p

$ → c

a → b'

c→ $

crossover with #BF restores #BF

strong PI = {q,$a}

strong PI = {q,$a}

αqB

qα$F >< #BFqα$BF ∈

strong PI = {p,ccb’}

R= (V, Nc, N1,..., Nn, Nout, K̂, f)

Networks of Genetic Processors

Theorem: ANGPs are computationally complete

Γ = (V, N1, N2,..., Nn,G, N)

input node output node

fully connected subgraph

The network topology

q

in

N q

out

N

crossover

{w, q0 $, F}

q0 $wF

Nout = (∅,∅,∅,∅,∅,∅, (2), (1))

K̂

Networks of Genetic Processors

Theorem: ANGPs are computationally complete

M = (Σ, Γ,Q,δ,q0, B,Qf)

A similar simulation for non-deterministic Turing machines

αqaβinstantaneous description encoded instantaneous description qα$aβF

movement to the right

(p,b,R) δ(q,a)

dedicated processor NqapbR

movement to the right a couple of dedicated processors for every c

NqapbcL1 NqapbcL2

q → p

$ → b'

a→ $

q → p

$ → c

a → b'

c→ $

strong PI = {q,$a}

strong PI = {q,$a}

strong PI = {p,ccb’}

R= (V, Nc, N1,..., Nn, Nout, K̂, f)

∈

(p,b,L) δ(q,a)∈

Networks of Genetic Processors

Theorem: NP PTimeANGP

Looking to the computational complexity

Let us consider an ANGP R and the language L accepted by R, then the time

complexity of the accepting computation of R if x is given as an input string is

denoted by TimeR(x) and it is defined as the number of steps (both communication

and evolutionary ones) such that the network R halts on x in an acceptance mode.

⊂

TimeR(n) = max{TimeR(x) : x ∈ L(R), x = n}

TimeANGP(f)={L: There exists an ANGP, R, and a natural number n0 such that

L=L(R) and for all n ≥ n0, (TimeR(n) ≤ f(n))}

TimeANGP(poly) ≡ PTimeANGP

Open Problem: PTimeANGP ?⊂

Networks of Genetic Processors

Other variants of Networks of Genetic Processors

Generating Networks of Genetic Processors (GNGPs)

No input processor

The output processor collects the generating language

The halting criterium is the repetition of two consecutives configuration

Optimizing Networks of Genetic Processors (ONGPs)

The input processor stores the instance of the problem P to be optimized according to f

The output processor collects the solution S such that, at anytime t,

No explicit halting criteria

The processor filters can be substituted by integer functions and threshold values

Theorem: Let L be a recursively enumerable language generated by a grammar
G in Kuroda’s Normal Form. Then, there exists a GNGP R such that

(1) R has 16 genetic processors

(2) R generates L

S= argmax/ min(f , t) : (∀ti ≤ t)(f (Sti
) ≤ / ≥ f (S))

Networks of Genetic Processors

From Networks of Genetic Processors to Parallel Genetic Algorithms

The main components of a Genetic Algorithm (or Evolution Program) are:

• A genetic representation for potential solutions to the problem

• A way to create an initial population of potential solutions

• An evaluation function that plays the role of the environment, rating solutions in

terms of their ”fitness”

• Genetic operators that alter the composition of the potential solutions

• Values for various parameters that the genetic algorithm uses(population size,

probabilities of applying genetic operators,etc.)

Networks of Genetic Processors

From Networks of Genetic Processors to Parallel Genetic Algorithms

The main ingredients to propose Parallel and Distributed Genetic Algorithm

The distribution of the individuals in different populations (master-slave, multiple

populations or islands, fine-grained populations or hierarchical and hybrid populations)

and the neighborhood topology (rings, m,n-complete, ladders, grids, etc.)

The synchronicity of the populations evolution and communication.

The migration phenomena: The migration rates (the percentage of individuals that

migrate from one population to a different one),the migration selection (the selections

of the individuals that migrate) and the migration frequency.

distribution

synchronicity

migration

migration

Networks of Genetic Processors

From Networks of Genetic Processors to Parallel Genetic Algorithms

From (Parallel) Genetic Algorithm as optimizers to acceptors

Acceptance Criterion I

Let w be an input string. We will say that a PGA accepts w if, after a finite number of iterations

(operator applications, fitness selection and individuals migration), w appears in a predefined

survival population.

Acceptance Criterion II

Let w be an input string. We will say that a PGA accepts w if, after a finite number of iterations

(operator applications, fitness selection and individuals migration), a distinguished individual

xyes appears in a predefined survival population. We say that the PGA rejects the input string

if, after a finite number of iterations (operator applications, fitness selection and individuals

migration), a distinguished individual xnot appears in a predefined survival population or the

PGA never finishes.

Theorem: Let D be a decision problem and LD its acceptance language. D can be

solved by a Parallel Genetic Algorithm with acceptance criterion I iff it can be

solved with acceptance criterion II.

Networks of Genetic Processors

From Networks of Genetic Processors to Parallel Genetic Algorithms

Theorem: Parallel Genetic Algorithms with multiple-populations, synchronicity

and full migration phenomena are computationally complete.

Open Problem I Is full migration phenomena really needed ?

Open Problem II What is the role of crossover ?

Networks of Genetic Processors

Solving the Optimization Traveling Salesman Problem (I)

The Problem: There are n cities and connections between them. We have to find

a path that starts and begins at a given city, visits any city with a minimal distance

100 15020

130

73

140

20

33

27

43 45 73

38

G=(N,A)

C = argmin(A[Ci,Ci+1]+ A[Cn,C1])
i=1

n−1

∑Find C={1,2,…,n} such that

Networks of Genetic Processors

Solving the Optimization Traveling Salesman Problem (II)

• The strings in the processors are the secuences of nodes in a path

• The filters at the genetic processors are replaced by fitness functions (the sum

of the distances in the path) and selection of the best

• The experiments replicate “Solving Travaling Saleman Problem by Ant Colony

Optimization Algorithm with Association Rule”, G. Shang, Z. Lei, Z. Fengting, Z.

Chunxian. Third International Conference on Natural Computation (ICNC

2007)

• 30 cities defined through their coordinates

Maximum Population at any processor 10 average best worst

Genetic algotihms 852,99 675,57 982,83

Complete NGP with 7 processors 550,07 495,66 624,01

Linear NGP with 16 processors 528,52 485,71 601,6

Star NGP with 10 processors 512,18 484,25 545,11

Circular NGP with 13 processors 549,79 521,13 599,56

Networks of Genetic Processors

Solving the Optimization Traveling Salesman Problem (III)

Maximum Population at any processor 20 average best worst

Genetic algotihms 676,25 625,8 732,72

Linear NGP with 13 processors 502,35 428,28 553,18

Linear NGP with 16 processors 482,4 453,26 519,58

Linear NGP with 20 processors 503,03 447,66 576,3

Complete NGP with 20 processors 502,46 442,51 567,4

Linear NGP with 20 processors (+ one random

generator every 3 processors)

491,07 436,95 541,59

Maximum Population at any processor 30 average best worst

Linear NGP with 20 processors 499,71 423,25 539,25

Complete NGP with 20 processors 496,01 457,65 540,99

Networks of Bio-Inspired Processors

Towards a full general model …

First: Generalize the operations in the processors

Mutation processors Splicing processors Hairpin processors etc. etc.

Second: Generalize the filter positions

input output

permitted

forbidden

Networks of Bio-Inspired Processors

Towards a full general model …

A bio-inspired processor over V is a 5-tuple (op,PI,FI,PO,FO),where:

op is a biologically inspired operation over strings

PI,FI V are the input permitting/forbidding contexts of the processor

PO,FO V are the output permitting/forbidding contexts of the processor

⊆

⊆

• op encapsulates the operation parameters

• PI,FI,PO and FO can be empty so the filters are attached to the connections

Networks of Bio-Inspired Processors

Accepting Networks of Bio-Inspired Processors

where

V and U are the input and network alphabets

G=(XG,EG) is an undirected graph without loops

N: XG � BPU associate a bio-inspired processor to every node in G

β: XG � {s,w} associates a filter predicate to every node

γ:EG � 2U x 2U associates a filter (Pe,Fe) to every edge in the graph

xI,xO are the input and output nodes

),,,,,,,(OI xxNGUV γβ=Γ

Networks of Bio-Inspired Processors

References

• Fernando Arroyo Montoro, Juan Castellanos, Victor Mitrana, Eugenio Santos, José M. Sempere.

Networks of Bio-inspired Processors Triangle Vol. 7, pp 3-22. 2012

Networks of Evolutionary Processors
• J.Castellanos, Carlos Martín-Vide, Victor Mitrana, José M.Sempere. Networks of evolutionary processors.

Acta Informatica 39, pp 517-529. 2003.

• M. Margenstern, V. Mitrana, M.J. Pérez-Jiménez. Accepting hybrid networks of evolutionary processors. In

Proceedings of the International Meeting on DNA Computing, DNA 10, LNCS Vol. 3384, pp 235-246.

Springer.2005.

Networks of Splicing Processors
• F. Manea, C. Martín-Vide, V. Mitrana. Accepting networks of splicing processors. In Proceedings of the First

Conference on Computability in Europe, CiE 2005,LNCS Vol. 3526, pp 300-309. Springer. 2005.

• F. Manea, C. Martín-Vide, V. Mitrana. Accepting networks of splicing processors: complexity results.

Theoretical Computer Science 371, pp 72-82. 2007.

Networks of Genetic Processors
• M. Campos, José M. Sempere. Accepting networks of genetic processors are computationally complete.

Theoretical Computer Science Vol. 456, pp 18-29. 2012.

