
A Domain Specific Language
Based on Membrane Computing for

Synthetic Biology

Marian Gheorghe

Verification and Testing Group
Department of Computer Science

University of Sheffield, UK

2nd Int School on Biomolecular and Biocellular Computing (ISBBC’13) Madrid, 23-25/09 2013

Domain Specific Languages for
Bio-inspired Computing and

Synthetic Biology

Marian Gheorghe

Verification and Testing Group
Department of Computer Science

University of Sheffield, UK

2nd Int School on Biomolecular and Biocellular Computing (ISBBC’13) Madrid, 23-25/09 2013

Summary

1.  Membrane computing

1.  Roots & definition
2.  Main research topics

2.  Domain specific language for bio-inspired computing
1.  Kernel P systems
2.  Examples: partition problem & firing squad problem

3.  Probabilistic P systems
1.  Features of a domain specific language
2.  Formal verification & natural language patterns
3.  Simple example

1.  Membrane computing –
Introduction, roots and definition

Membrane computing (I)

•  A computational model, belonging to natural computing,

abstracting from the functioning and structure of the living cells
(Membrane or P systems)

•  Three essential features: a certain structure of membranes
delimiting regions (compartments, cells), some multisets of objects
and finite sets of rules associated to regions

•  Evolving in steps, from one configuration to another one according to
a given strategy (more often is maximal parallelism = the objects
not allocated to rules in a computation step can not be allocated to any
of the rules)

•  Rules can transform objects, move objects, and even modify the
membrane structure (creation/division/dissolution/moving)

Gh Păun: JCSS 2000 (TUCS 1998)

Membrane computing (II)

•  Membrane systems generalise (include) L systems and DNA

computing, (PC) grammar systems

•  Similar models:
•  cellular automata, networks of evolutionary processors,

calculus with cilliates, reaction systems
•  pi-calculus, mobile ambients, brane calculus, Petri nets

Rozenberg, Bäck & Kok: Handbook of NC, 2011
Kari, Rozenberg: CACM, 2008

Membrane computing – Basic definition

 P = (O, µ, w1, …, wn, R1, …, Rn, i0) - P system

where
O – an alphabet (finite set)
µ – a membrane structure with n membranes (regions)
w1, …, wn – multisets over O; wi – initial values
R1, …, Rn – sets of rules
i0 – the output cell
Ri – evolution and communication rules: v → w; v, w – strings over
O + some indications of target regions in w

Simple example

P = ({a,b,c}, [1[2]2]1, aa, λ, {a → aa2, aa → aoutaout}, {a → bcc}, 2)

aa

λ

1

2

1 1

2

aa

aa

a→ aa2

⇒

2

aa

aa

bcc

bcc ⇒

a→ aa2

a→bcc

1

2
b2p

c4p

a→ aoutaout

a→bcc

… ⇒

aa

w = b2pc4p, p≥0

Characteristics: distributed device; non-determinism; maximal parallelism

Membrane systems variants

 P = (O, µ, w1, …, wn, R1, …, Rn, i0) - P system

•  Objects: simple symbols, strings

•  Rules: specific communication functions, splicing (DNA),

probabilities, conditions, use priorities and/or states, structure
changes…

•  System’s behaviour: maximal or limited parallelism,

sequential, asynchronous, stochastic…

•  System structure: tree, graph (tissue, neural…), population

1.2 What has been studied?

Basic membrane systems. Computational power

NOPn(x) – the family of sets of natural numbers computed by
membrane systems with at most n membranes; * - arbitrary
number of components;
x = ncoo – context free rules (non-cooperative, at most one
element on lhs), x = coo – context dependent rules

(1) NOP*(ncoo) = NOP1(ncoo) = NCF – basic P systems
(2) NOP*(coo) = NOP1(coo) = NRE

Observations.
-  Only one component (membrane/region) is used (no hierarchy)
-  No communication
-  It (partially) reflects Chomsky hierarchy
-  Simulate context-free grammars/matrix grammars

Population P systems – Some results

Components dynamically connected & environment.

NOPPn,k(x,y) – the family of sets of natural numbers computed by
Population P systems with at most n components and at most k components
in each connected component; * - arbitrary no of components;
x = ncooCom – non-cooperative communicating rules (a;b,in), (a;b,enter),
(b,exit); x = cooCom - cooperative communicating rules; y = nα - without
bond making rules (i,x1;x2,j)

(1) NOPP*,*(ncooCom,nα) = NOPP1,1(ncooCom,nα) = NCF
 – population P systems with evolution and symport/antiport/uniport rules
(2) NET0L ⊆ NOPP4,2(ncooCom, α1)
(3) NOPP2,2(cooCom,nα) = NRE
(4) NOPP4,1(cooCom,nα) = NRE

Bernardini, Gheorghe: JUCS, 2004;
Bernardini, Gheorghe, Margenstern, Verlan: TCS, 2008

Problems

•  Computational power & descriptional complexity

•  Structural operational semantics and relationships with other
computational models: process algebra and Petri Nets (another
semantics)

•  Formal verification - Model checking: Maude, NuSMV (basic
systems), Spin (kP systems) and Prism (stochastic systems)

•  P systems testing

•  Model various systems (applications)

Ref: Handbook on MC, 2010; http://ppage.psystems.eu/

2. Domain specific language for bio-inspired
computing: Kernel P systems

Kernel P systems – Motivation (Research plan)

 Why a new model - kP system ?

•  need to have a slightly more general model allowing various

classes of P systems or concepts utilised to be mapped into this
model

•  create a framework where systems using these models can be
analysed (formally verified – initially model checking and
testing)

•  solve satisfactorily problems already coded with other P systems

•  integrate with current tools

Initially introduced in February 2012, BWMC, as a PhD project

Kernel P systems – Informal definition

 kP system, for short, is characterised by

•  a dynamic structure, as a network of compartments

•  multisets of objects in each compartment

•  rules can have guards and include
•  rewriting and communication rules
•  structural rules (ex. membrane division, dissolution)

•  each compartment has an explicit execution strategy

kP system basic definition
 kΠ = (A, µ, C1, …, Cn, i0)

where
•  A – an alphabet (finite set)
•  µ =(V, E) – a membrane structure, a graph with vertices

denoting compartments and edges defining connected
compartments

•  C1, …, Cn – compartments, where each Ci = (ti, wi), 1 ≤ i ≤ n,
consists of
•  a compartment type, ti, and
•  an initial multiset, wi;
•  each compartment type is a tuple, ti =(Ri, σi), 1 ≤ i ≤ n, with

Ri, a set of rules and σi, an execution strategy of the rules
from Ri

•  i0 – the output cell

kP system rules

A rule from a compartment Cl = (tl, wl) of kΠ, has one of the following
types

•  rewriting and communication: x → y {g}, where x is a non-empty multiset

over A, y is a multiset and g is a guard, y = (a1, t1)… (ah, th); ti is either tl or is
the type of a compartment Ci which is linked with Cl

•  membrane division: [x]α → [y1](α,1)… [yh](α, h) {g}, with α=tl and (α, i)=ti ;
compartment Cα is divided into C(α,1), …, C(α, h); links are inherited

•  membrane dissolution: [x]α → λ; the compartment and its links are destroyed

A guard, g, is
•  a relational term of the form op an, where op is a relational operator, a is an

element of A and n is a positive integer; if w is the current multiset then |w|a
denotes the number of occurrences of a w - op an denotes |w|a op n;

•  relational terms can be connected, as usual in Boolean expressions, by
Boolean operators ∨, ∧ or negated by ⁄.

Execution strategy - σ

For a compartment type, t =(R, σ), and r, r1, …, rs, labels of rules, the
execution strategy, σ, is defined by the following regular-like expression:

•  σ = λ - no rule from the compartment instantiating t is executed
•  σ = {r} - the rule r is executed
•  σ ={r1, …, rs} – one of the rules labelled r1, …, rs, is non-

deterministically chosen and executed; if none is applicable then none
is executed (similar to a skip)

•  σ ={r1, …, rs}* – the rules are applied an arbitrary number of times,
including 0; this is arbitrary parallelism

•  σ = σ1& …& σs – σ1, …, σs – are executed sequentially; if one is not
applicable the execution stops, equivalent to a jump at the end of the
sequence

•  σ ={r1, …, rs}T – the rules are executed according to the maximal
parallelism strategy

kP system example

Component types ti =(Ri, σi), 1 ≤ i ≤ 3, where

R1 = {r1:a → a(b,2)(c,3) {≥p}, r2:p → p, r3:p → λ}; σ1= Lab(R1)T (max par)
R2 = {r1:b → (b,0)c {≥p}, r2:p → p, r3:p → λ}; R’2 = {r4:[]2→[]2[]2{≥b2∧≥p};
σ2= Lab(R2)T & Lab(R’2), (max par followed by seq); and
R3 = Φ, σ3=λ.

 kΠ = ({a,b,c,p}, µ, C1, …, C4, C4), µ=C1-C2-C3-C4.
C1 =(t1,w1,0 =a3p), C2 = C3 = (t2,w2,0 =w3,0 =p), C4 = (t3,w4,0 =λ)

(a3p, p, p, λ)=>(a3p, b2p, bp, c3)=>(a3, b2c2, b2c2, bcp, c6)
µ=C1-C’2-C3-C4; C1-C”2-C3-C4; C’2 & C’2 inherit C2 links
 (r1r1r1r2, r2, r2, λ) (r1r1r1r3, r1r1r3 & r4, r1r2, λ)

(a3, b2c2, b2c2, bcp, c6) => (a3, b2c2, b2c2, c2, c6) – final;
 (λ, λ, λ, r1r3, λ)

Compartment C4 contains c6 and environment: b3 b in the final configuration.

2.1. Partition problem

NP-complete problems

•  P systems with active membranes and electric charges mapped

into kP systems and solutions to some NP-complete problems
provided (3-colouring, subset sum, partition etc)

•  Scenario
•  Generate enough space
•  Generate (almost) all the solutions
•  Check the validity of each solution
•  Provide answer

Partition problem

Given a finite set V, a function weight on V with positive integer
values,
weight : V → Ζ+,
and a number K, check whether there exists a partition W1, W2 of
V, such that weight(W1)=weight(W2)=K.

weight(W) means the sum of the weights of the elements of W.

Partition problem - codification

Given V={v1, …, vn} with weight(vi) = ki ,
we build a kernel P system with two compartments, where

c(V) denotes the multiset with elements vk, where v is an element
of V such that weight(v) = k

Partition problem – solution

Solution sketch:

1.  Two compartments, C1 and C2, connected, with w1=S, w2=A1c(V)
2.  The subsets, W1, W2, of V, are generated with elements from B1, …, Bn;

each Bi, corresponds to a vi from V; the subset W1, is generated by using
membrane division rules

 [Ai]2 → [Bi Ai+1]2 [Ai+1]2, 1 ≤ i ≤ n-1,
 [An]2 → [Bn X]2 [X]2 (in n steps) - W2 is its complement

1.  The weights of the two complementary subsets, W1 and W2, are matched up
by rewriting rules vi vj → v {=Bi ∧ ⁄=Bj ∧= X ∨⁄=Bi ∧ =Bj ∧= X}

2.  The solution, if exists, is communicated to compartment ‘1’ by using a rule
Y → (T,1) {<v1 ∧… ∧ <vn ∧=vk}

Properties.
Generic: Eventually there will be an answer, either “yes” or “no”

Partition problem – weak variant

Check whether there exists a subset W of V, such that weight(W)=K

Obs. Follow almost the same algorithm, but a new subset is generated
when its current weight is less than K & the solution validity is
checked at each step.

Weak partition problem – solution
Solution sketch:

1.  Two compartments, C1 and C2, connected, with w1=S, w2=A1c(V)
2.  The subsets W of V, are generated with elements from B1, …, Bn; each Bi,

corresponds to a vi from V; the subset W, is generated by using membrane
division rules

 [Ai]2 → [Bi Ai+1]2 [Ai+1]2 {<vk}, 1 ≤ i ≤ n-1,
 [An]2 → [Bn]2 []2 {<vk}; (in n steps).

1.  The vi‘s are transformed into v’s when Bi appears in a compartment, i.e., in W
vi → v {=Bi};

2.  The solution, if exists, is communicated to compartment ‘1’ by using a rule
 Y → (T,1) {((=B1∧≥v1)∨…∨ (=Bn∧ ≥vn))∧=vk}

Properties.
Generic: Eventually there will be an answer, either “yes” or “no”
Invariant: If Bi does not appear (Bi appears) in a compartment after a membrane
division stage then vi will stay there in all the subsequent steps (then vi will
disappear since the next step).

2.2. Synchronisation problem

Application: synchronisation problem

Synchronise the compartments of a membrane system (initially defined for
one dimensional cellular automaton)

Problem: membrane system with n compartments (tree structure), and given
initial states; provide a solution to the problem of finding a state of the system
whereby every region will contain the same multiset and this is obtained for the
first time

Solution idea: a nondeterministic solution consisting of

a. a signal travels down on the longest path
b. returns back by counting the number of regions
c. goes down by spreading the same number of objects at each level and
decreasing by one when a new level is entered
d. finally the synchronisation state is reached

Bernardini, Gheorghe, Margenstern, Verlan: IJFCS, 2008 – can be rewritten as
kP system model

S1→(S1,in)
S’ →(S2,here)
S2→(S2,in) __________

S1 S’ → (S3a,out)
S3→(S3a,out)
a→(a,out)
S3R→ (S5b,here)
a→(b,here)__________

LYS5b→(S5,in*)(S6,here)
LYS5b→(S7,here)
b→(b,in*)(b’,here)____

S6b’ →(S6,here)
S7b→(S7,here)________

S6→ F
S7→ F

LYR S1 S’

LY LY LY

LY

S1→(S1,in)
S’ →(S2,here)
S2→(S2,in) __________

S1 S’ → (S3a,out)
S3→(S3a,out)
a→(a,out)
S3R→ (S5b,here)
a→(b,here)__________

LYS5b→(S5,in*)(S6,here)
LYS5b→(S7,here)
b→(b,in*)(b’,here)____

S6b’ →(S6,here)
S7b→(S7,here)________

S6→ F
S7→ F

LYR S1 S’

LY LY LY

LY

S1→(S1,in)
S’ →(S2,here)
S2→(S2,in) __________

S1 S’ → (S3a,out)
S3→(S3a,out)
a→(a,out)
S3R→ (S5b,here)
a→(b,here)__________

LYS5b→(S5,in*)(S6,here)
LYS5b→(S7,here)
b→(b,in*)(b’,here)____

S6b’ →(S6,here)
S7b→(S7,here)________

S6→ F
S7→ F

LYR S2

LY S1 LY LY

LY

S1→(S1,in)
S’ →(S2,here)
S2→(S2,in) __________

S1 S2→ (S3a,out)
S3→(S3a,out)
a→(a,out)
S3R→ (S5b,here)
a→(b,here)__________

LYS5b→(S5,in*)(S6,here)
LYS5b→(S7,here)
b→(b,in*)(b’,here)____

S6b’ →(S6,here)
S7b→(S7,here)________

S6→ F
S7→ F

LYR

LY LY LY

LY S1 S2

S1→(S1,in)
S’ →(S2,here)
S2→(S2,in) __________

S1 S2→ (S3a,out)
S3→(S3a,out)
a→(a,out)
S3R→ (S5b,here)
a→(b,here)__________

LYS5b→(S5,in*)(S6,here)
LYS5b→(S7,here)
b→(b,in*)(b’,here)____

S6b’ →(S6,here)
S7b→(S7,here)________

S6→ F
S7→ F

LYR

LY S3 a LY LY

LY

S1→(S1,in)
S’ →(S2,here)
S2→(S2,in) __________

S1 S2→ (S3a,out)
S3→(S3a,out)
a→(a,out)
S3R→ (S5b,here)
a→(b,here)__________

LYS5b→(S5,in*)(S6,here)
LYS5b→(S7,here)
b→(b,in*)(b’,here)____

S6b’ →(S6,here)
S7b→(S7,here)________

S6→ F
S7→ F

LY S5 bbb

LY LY LY

LY

S1→(S1,in)
S’ →(S2,here)
S2→(S2,in) __________

S1 S2→ (S3a,out)
S3→(S3a,out)
a→(a,out)
S3R→ (S5b,here)
a→(b,here)__________

LYS5b→(S5,in*)(S6,here)
LYS5b→(S7,here)
b→(b,in*)(b’,here)____

S6b’ →(S6,here)
S7b→(S7,here)________

S6→ F
S7→ F

S6 b’b’

LY S5 bb LY S5 bb LY S5 bb

LY

S1→(S1,in)
S’ →(S2,here)
S2→(S2,in) __________

S1 S2→ (S3a,out)
S3→(S3a,out)
a→(a,out)
S3R→ (S5b,here)
a→(b,here)__________

LYS5b→(S5,in*)(S6,here)
LYS5b→(S7,here)
b→(b,in*)(b’,here)____

S6b’ →(S6,here)
S7b→(S7,here)________

S6→ F
S7→ F

S6 b’

S6 b’ S7 b S7 b

LY S5 b

S1→(S1,in)
S’ →(S2,here)
S2→(S2,in) __________

S1 S2→ (S3a,out)
S3→(S3a,out)
a→(a,out)
S3R→ (S5b,here)
a→(b,here)__________

LYS5b→(S5,in*)(S6,here)
LYS5b→(S7,here)
b→(b,in*)(b’,here)____

S6b’ →(S6,here)
S7b→(S7,here)________

S6→ F
S7→ F

S6

S6 S7 S7

S7

S1→(S1,in)
S’ →(S2,here)
S2→(S2,in) __________

S1 S2→ (S3a,out)
S3→(S3a,out)
a→(a,out)
S3R→ (S5b,here)
a→(b,here)__________

LYS5b→(S5,in*)(S6,her)
LYS5b→(S7,here)
b→(b,in*)(b’,here)____

S6b’ →(S6,here)
S7b→(S7,here)________

S6→ F
S7→ F

F

F F F

F

Kernel P systems – Observations

•  A generic modelling framework

•  Direct mappings of neural-like P systems, P systems with active

membranes and electrical charges, generalised communicating P
systems

•  Two specification languages – P-lingua oriented and a special
syntax (kP-lingua) with Spin mapping

•  Formal verification and basis for testing

•  Natural language queries (CMC2013: paper and poster)

Joint project with F Ipate (Bucharest) with 2 PhD students;
collaborators: M Pérez-Jiménez group (Sevilla)

3. Probabilistic P systems

Probabilistic P systems

•  A generic framework consisting of compartments

•  Rules with probabilities

•  A specific execution strategy – based on Gillespie

•  Similar to stochastic process algebras and stochastic Petri nets

Romero-Campero, Gheorghe, Krasnogor: IJFCS, 2009

Gene regulatory network: P system model

Alphabet : gene, rna, protein, act, rep, act-gene, rep-gene
Compartment: b. Initial values: gene, act10, rep10

Rules
r1: [gene]b→[gene + rna]b, c1=0.347 min-1
r2: [rna]b→[rna + protein]b, c2=0.174 min-1
r3: [rna]b→[]b, c3=0.347 min-1
r4: [protein]b→[]b, c4=0.0116 min-1
r5: [act + gene]b→[act-gene]b, c5=6.641 min-1
r6: [act-gene]b→[act + gene]b, c6=0.6 min-1
r7: [act-gene]b→[act-gene + rna]b, c7=3.47 min-1
r8: [rep + gene]b→[rep-gene]b, c8=6.641 min-1
r9: [rep-gene]b→[rep + gene]b, c9=0.6 min-1

Lac operon in E coli:

WS Hlavacek, MA Savageau; J Molecular Biology, 1995

Stochastic Pi-calculus and Petri Nets

3.1 Domain specific language based on
probabilistic P systems

DSL based on P systems - LPP

•  A framework consisting of compartments, defined out of
modules (sets of rules)

•  Compartments distributed across a lattice with communication

mechanisms

•  All included in IBW together with a verification component and
optimisation module – Blakes et al, Bioinformatics, 2011

http://www.infobiotic.org/
Blakes et al: Infobiotics Workbench (42pp); book chapter in
Applications of P Systems in Biology, 2013, Springer

Extracting properties - Daikon

•  From experiments or simulations – data series obtained

•  Extract various properties, including invariants - Daikon

•  For the gene regulatory network, positive regulation then

 0 ≤ rna ≤ 24
 0 ≤ protein ≤ 205
 &
 rna, protein > rep

Invariants checking – Positive regulation

… more likely rna’s between 0 and 15, proteins between 0 and 150

Prism model checker

3.2 Current DSL – Main features

Current work on DSL platform

•  DSL for synthetic biology
•  Mechanism to specify interactions/reactions (GEC – MS

research) - processes
•  A way to specify properties of the genetic material (Eugene –

California University) defining devices
•  DSL: a hierarchy of devices with processes in systems, cells,

colonies etc

•  Stochastic model checker
•  Verification (Prism, MC2,…)
•  Use of natural language patterns
•  Integration with the DSL

•  Automatic definition of parts and devices –atgc compiler

Natural language: Property patterns
3. Property Patterns for IBL

Existence ::= The concentration of S becomes greater than the concentration of F [Barbuti et. al., 2005].
Absence ::= It is not possible to activate X in any pathways [Donaldson and Calder, 2012].
Universality ::= GTP level is always less than k [Antoniotti et. al., 2003].
Until ::= The protein A degrades before binding to the protein B [Heath et. al., 2006].
Response ::= If reaction R is possible, then eventually the reaction R happens [Eker et. al., 2002].
Steady-State ::= In the long run there are precisely n MAPK s activated [Kwiatkowska et. al., 2008].
Oscillation ::= Oscillation terminates in species X 2 {A,B ,C} [Ballarini et. al., 2009].
Reward ::= Expected time to reach a state in which all gates have finished executing. [Lakin et. al., 2012].

Property patterns for the DSL (1) 3. Property Patterns for IBL

DEVICEinput species output species

Property patterns for the DSL (2)
3. Property Patterns for IBL

DEVICEinput species output species

DEVICEinput species output species

DEVICEinput species output species

species

RULES

RULES

CELL

Property patterns for the DSL (3)
3. Property Patterns for IBL

DEVICEinput species output species

DEVICEinput species output species

DEVICEinput species output species

species

RULES

CELL

DEVICEinput species output species

DEVICEinput species output species

DEVICEinput species output species

species

RULES

RULES

CELL

DEVICEinput species output species

DEVICEinput species output species

DEVICEinput species output species

species

RULES

RULES

CELL

DEVICEinput species output species

DEVICEinput species output species

DEVICEinput species output species

species

RULES

RULES

CELL

DEVICEinput species output species

DEVICEinput species output species

DEVICEinput species output species

species

RULES

RULES

CELL

DEVICEinput species output species

DEVICEinput species output species

DEVICEinput species output species

species

RULES

RULES

CELL

DEVICEinput species output species

DEVICEinput species output species

DEVICEinput species output species

species

RULES

RULES

CELL

DEVICEinput species output species

DEVICEinput species output species

DEVICEinput species output species

species

RULES

RULES

CELL

DEVICEinput species output species

DEVICEinput species output species

DEVICEinput species output species

species

RULES

RULES

CELL

DEVICEinput species output species

DEVICEinput species output species

DEVICEinput species output species

species

RULES

RULES

CELL

REGION

Case study 3. Property Patterns for IBL

Property patterns at the Region level
3. Property Patterns for IBL

Region-level Queries:

– VERIFY [SA IN SENTINEL > 0 uM] WILL EVENTUALLY HOLD

– VERIFY [SA IN E COLI > 0 uM] WILL EVENTUALLY HOLD

– VERIFY [SA IN ALL CELLS > 0 uM] WILL EVENTUALLY HOLD

– VERIFY [AHL IN PSEUDOMONAS > 0 uM] IS FOLLOWED BY
[SA IN SENTINEL NEIGHBOUR OF PSEUDOMONAS > 0 uM]

– VERIFY [SA IN SENTINEL > 0 uM] IS FOLLOWED BY
[SA IN NEIGHBOUR OF SENTINEL > 0 uM]

– VERIFY [SA IN SENTINEL > 0 uM] IS FOLLOWED BY
[COLV IN SENTINEL > 0 uM]

– VERIFY [COLV IN SENTINEL > 0 uM] IS FOLLOWED BY
[PYOSINS IN BULLET > 0 uM]

– VERIFY [PYOSINS IN SENTINEL > 0 uM] IS FOLLOWED BY
[AHL IN PSEUDOMONAS = 0 uM]

– VERIFY [AHL IN PSEUDOMONAS > 0 uM] IS FOLLOWED BY
[AHL IN PSEUDOMONAS = 0 uM]

Conclusions

•  Membrane computing as a nature-inspired computing paradigm

•  Kernel P systems and probabilistic P systems – bases for DSL’s

•  Each DSL comes with its own set of verification tools

•  Some are still “work in progress”

(PhD) Research proposals

•  Kernel P systems:

•  Efficient algorithms to translate various classes of P systems

(especially those with good examples) into kP systems
•  Good tools for simulation, including parallel platforms
•  Improved Spin formal verification platform

•  Synthetic biology DSL: probabilistic verification tools

(PhD) Research proposals

•  Kernel P systems:

•  Efficient algorithms to translate various classes of P systems

(especially those with good examples) into kP systems
•  Good tools for simulation, including parallel platforms
•  Improved Spin formal verification platform

•  Synthetic biology DSL: probabilistic verification tools

INTERESTED: contact me at m.gheorghe@sheffield.ac.uk

Projects, Publications

-  EPSRC grants: Infobiotics at Nottingham & Roadblock
(Nottingham, Sheffield, Warwick)
-  Romanian Research Council CNCS-UEFISCDI, PN- II-ID-
PCE-2011-3-0688: MuVet

-  http://ppage.psystems.eu/
-  http://www.dcs.shef.ac.uk/~marian

-  Application of MC in Biology, Springer (in press)

Acknowledgements

Many Thanks for the invitation!

 MuVet, Roadblock, RAE UK – partially supporting the research

