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Goal:

I Unconventional approaches/tools to attack the P versus NP problem
are given by using Membrane Computing.
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Computability versus Complexity

Computability (1931):

I Define the informal idea of mechanical/algorithmic problems resolution in
a rigorous way.

I Which problems are computable in a (universal) model?

Complexity (1970):

I Provide bounds on the amount of resources necessary for every
mechanical procedure (algorithm) that solves a given problem.

I Which (computable) problems are efficiently solvable?
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The P versus NP problem

I The P
?
= NP question is one of the outstanding open problems in

theoretical computer science.

I Whether or not finding solutions is harder than checking the correctness
of solutions

I Whether or not discovering proofs is harder than verifying their
correctness

• This is essentially the famous P versus NP problem

. . . the central problem of Computational Complexity theory

It is widely believed that it is harder

I finding (resp. proving) than checking (resp. verifying)

I to solve a problem than to check the correctness of a solution

I . . . P 6= NP
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Attacking the P versus NP problem

Classical approach (1970):

I P = NP.

I Find an NP-complete poblem such that it belongs to the class
P.

I P 6= NP.

I Find an NP-complete poblem such that it does not belong to
the class P.
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Membrane Computing

• P systems provide nondeterministic models of computation.

• A computational complexity theory in Membrane Computing is proposed.

• Polynomial complexity classes associated with (cell–like and tissue–like) P
systems are presented.

I A notion of acceptance must be defined in the new (nondeterministic)
framework.

? We consider a definition of acceptance different than the classical

one for nondeterministic Turing machines.
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Recognizer Membrane Systems

• Cell-like P systems: Π = (Γ,Σ,H, µ,M1, . . . ,Mq,R, iin, iout)

• Tissue-like P systems: Π = (Γ,Σ, E ,M1, . . . ,Mq,R, iin, iout)

I The working alphabet contains two distinguished elements yes and no.

I All computations halt.

I For any computation of the system, either object yes or object no (but
not both) must have been sent to the output region of the system, and
only at the last step of the computation.

• Accepting/rejecting computations for recognizer P systems
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Semantics

The rules of a membrane system are applied in a non-deterministic maximally
parallel manner.

I Configuration.

I Initial configuration.
I Halting configuration.

I Transition step.

I Computation.

I Halting computation (accepting or rejecting)
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Polynomial time solvability by using membrane systems

I A decision problem X is solvable in polynomial time by a family of
recognizer membrane systems Π = {Π(n) : n ∈ N}, iff:

? The family Π is polynomially uniform by Turing machines, that is, there exists a DTM working in

polynomial time which constructs the system Π(n) from n ∈ N.

? There exists a pair (cod, s) of polynomial-time computable functions over IX such that:

(a) for each instance u ∈ IX , s(u) is a natural number and cod(u) is an input multiset of the
system Π(s(u));

(b) for each n ∈ N, s−1(n) is a finite set;

(c) the family Π is polynomially bounded with regard to (X , cod, s), that is, there exists a
polynomial function p, such that for each u ∈ IX every computation of Π(s(u)) with input
cod(u) is halting and it performs at most p(|u|) steps;

(d) the family Π is sound with regard to (X , cod, s), that is, for each u ∈ IX , if there exists
an accepting computation of Π(s(u)) with input cod(u), then θX (u) = 1;

(e) the family Π is complete with regard to (X , cod, s), that is, for each u ∈ IX , if
θX (u) = 1, then every computation of Π(s(u)) with input cod(u) is an accepting one.

I We denote it by X ∈ PMCR

I PMCR is closed under complement and polynomial–time reductions.
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Basic cell-like membrane systems

• Π = (Γ,Σ,H, µ,M1, . . . ,Mq,R, iin, iout).

• Basic transition P systems:

I [ u ]h → [ v ]h (evolution rules).

I [ u ]h → v [ ]h and u [ ]h → [ v ]h (communication rules).

I [ u ]h → v (dissolution rules).

• T : class of recognizer basic transition P systems.
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On efficiency of cell-like membrane systems

• Proposition 1 (Seville theorem, 2004)
Every DTM working in polynomial time can be simulated in polynomial time by
a family of recognizer basic transition P systems.

• Proposition 2 (Milano theorem, 2000)
If a decision problem is solvable in polynomial time by a family of recognizer
basic transition P systems, then there exists a DTM solving it in polynomial
time.

• Theorem: P = PMCT (Seville team, 2004).

I Corollary: P 6= NP if and only if every, or at least one, NP–complete
problem is not in PMCT .
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P systems with active membranes

• Electrical charges.

• Type of rules:

(a) [ a→ u ]αh (object evolution rules).

(b) a [ ]
α1
h
→ [ b ]

α2
h

(send–in communication rules).

(c) [ a ]
α1
h
→ [ ]

α2
h

b (send–out communication rules).

(d) [ a ]αh → b (dissolution rules).

(e) [ a ]
α1
h
→ [ b ]

α2
h

[ c ]
α3
h

(division rules for elementary membranes).

(f ) [ [ ]
α1
h1

[ ]
α2
h2

]αh → [ [ ]
α3
h1

]
β
h

[ [ ]
α4
h2

]
γ
h

(division rules for non–elementary membranes).

• The sets NAM,AM(+n) and AM(−n).
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On efficiency of P systems with active membranes

• Proposition 3: A deterministic P system with active membranes but without membrane division can be simulated

by a DTM with a polynomial slowdown.

Theorem: P = PMCNAM.

• Efficient solutions to NP–complete problems in AM(−n):

I NP ∪ co-NP ⊆ PMCAM(−n) (Seville team 2003, A. Alhazov, C. Mart́ın and L. Pan, 2004).

• A borderline between efficiency and non–efficiency: division rules in the
framework of AM(−n).

• Bounds of the efficiency:

I PSPACE ⊆ PMCAM(+n) (A. Alhazov, C. Mart́ın and L. Pan, 2003).

I PSPACE ⊆ PMCAM(+n) ⊆ EXP (A.E. Porreca, G. Mauri and C. Zandron, 2006).

• Conclusion: the usual framework of AM for solving decision problems is too
powerful from the complexity point of view.
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Polarizationless P systems with active membranes

• Π = (Γ,H, µ,M1, . . . ,Mq , R, iin, iout ),

(a) [ a→ u ]h (object evolution rules).

(b) a [ ]h → [ b ]h (send–in communication rules).

(c) [ a ]h → [ ]h b (send–out communication rules).

(d) [ a ]h → b (dissolution rules).

(e) [ a ]h → [ b ]h [ c ]h (division rules for elementary membranes).

(f ) [ [ ]h1
[ ]h2

]h → [ [ ]h1
]h [ [ ]h2

]h (division rules for non–elementary membranes).

• The sets NAM0,AM0(α, β, γ, δ), where:

I α ∈ {−d,+d}.

I β ∈ {−n,+n}.

I γ ∈ {−e, +e}.

I δ ∈ {−c,+c}.

14 / 22



A Păun’s conjecture

At the beginning of 2005, Gh. Păun (problem F from 1) wrote:

My favorite question (related to complexity aspects in P
systems with active membranes and with electrical charges)
is that about the number of polarizations. Can the polar-
izations be completely avoided? The feeling is that this is
not possible – and such a result would be rather sound:
passing from no polarization to two polarizations amounts
to passing from non–efficiency to efficiency.

The so–called Păun’s conjecture can be formally formulated:

P = PMCAM0(+d,−n,+e,+c)

1
Gh. Păun: Further twenty six open problems in membrane computing. Third Brainstorming Week on

Membrane Computing (M.A. Gutiérrez et al. eds.), Fénix Editora, Sevilla, 2005, pp. 249–262.
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Partial answers

• Limitations of AM0 which do not make use of dissolution rules:

Theorem: P = PMCAM0 (−d,+n,+e,+c) (Seville team, 2006).

I The notion of dependency graph:

? Simulating accepting computations in AM0 (−d ,+n,+e,+c) by
means of reachability problems in a static directed graph.

• Efficiency of AM0 when dissolution and division for non–elementary
membranes is permitted:

I PSPACE ⊆ PMCAM0 (+d,+n,+e,+c) (A. Alhazov, P-J, 2007).

• A borderline between efficiency and non–efficiency: dissolution rules in the
framework of AM0(+n,+e,+c).
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Tissue-like membrane systems

• Π = (Γ,Σ, E ,M1, . . . ,Mq,R, iin, iout)

• Basic tissue P systems:

I (i , u/v , j), for i , j ∈ {0, 1, . . . , q}, i 6= j , and u, v ∈ Γ∗

(symport-antiport rules).

I Length of the rule (i , u/v , j): |u|+ |v |

• Tissue P systems with cell division:

I Symport-antiport rules.

I [ a ]i → [ b ]i [ c ]i , where i ∈ {1, 2, . . . , q} and a, b, c ∈ Γ (division rules).

• Tissue P systems with cell separation:

I Symport-antiport rules.

I [ a ]i → [ Γ1 ]i [ Γ2 ]i , where i ∈ {1, 2, . . . , q}, a ∈ Γ, i 6= iout and {Γ1, Γ2} is a fixed partition of Γ

(separation rules).

• The sets T C, T DC, T SC, and T DC(k), T SC(k), for each k ≥ 1.
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On efficiency of tissue P systems

• P = PMCT C (Seville team, 2009).

• P = PMCT DC(1) (Seville team, 2010).

• P = PMCT SC(2) (L. Pan, P-J, A. Riscos, M. Rius, 2012).

• NP ∪ co−NP ⊆ PMCT DC(2) (A. Porreca, N. Murphy, P-J, 2012).

• NP ∪ co−NP ⊆ PMCT SC(3) (P. Sośık, P-J, 2012).

• Borderlines between efficiency and non–efficiency:

I division rules in the framework of T C.

I length of communication rules in the framework of T D: passing from 1 to 2

amounts to passing from non–efficiency to efficiency.

I length of communication rules in the framework of T S: passing from 2 to 3

amounts to passing fromm non–efficiency to efficiency.
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Tissue P systems without environment

• Tissue-like P systems: Π = (Γ,Σ, E ,M1, . . . ,Mq,R, iin, iout)

I The objects of E initially appear located in the environment in an
arbitrary number of copies.

• Tissue-like P systems without environment: E = ∅.

• The classes T̂ C, T̂ DC, T̂ SC, and T̂ C(k), ̂T DC(k), ̂T SC(k), for each k ≥ 1.
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On efficiency of tissue P systems without environment

Division rules

• For each k: PMCT̂ DC(k+1)
= PMCT DC(k+1) (Seville team, 2012).

I P = PMCT̂ DC(1)
.

I NP ∪ co−NP ⊆ PMCT̂ DC(2)
.

• The length of communication rules provides a new borderline of the efficiency
in the framework T̂ D.

Separation rules

• P = PMCT̂ SC (Seville team, 2013).

I P = PMCT̂ SC(3)
.

I NP ∪ co−NP ⊆ PMCT SC(3).

• The environment provides a new borderline of the efficiency in the framework
T SC(3).

20 / 22



Conclusions: Frontiers of the efficiency

I Kind of the rules:

I Division rules in AM(−n).
I Division rules in T C.
I Dissolution rules in AM0(+n,+e,+c).

I The length of communication rules:

I Passing from 1 to 2 in T D.
I Passing from 1 to 2 in T̂ D.
I Passing from 2 to 3 in T S.

I The environment:

I In the framework T SC(3).

Each of them provides a new way to attack the P versus NP problem.

21 / 22



THANK YOU!
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