Unconventional Computing and Systems Biology, Finite Automata

Andrei Paun

Dept of Artificial Intelligence, UPM J ohn J ack
North Carolina State University

Summary

- 1. Unconventional Computing (UC)
- Spiking P Systems
- Proteins on membranes
- 2. Systems Biology (SB)
- Discrete simulations
- Simulating latency in HIV
- 3. Finite Automata (FA)
- Cover automata
- Results

1 UC: motivation

- Compute with cells
- Now we can manipulate cells better
- Parallelism
- Limits to the current silicone computer

Membrane's Structure

Building block

Trans-membrane transport

- trans-membrane transfer of molecules can take place in three main ways:
- active transport
- passive transport
- vesicle-mediated transport

Active transport

Done through protein channels

Membrane Computing

- biochemical inspiration (compute with cells)
- parallel computing devices
- distributed computing devices
- many variants
- Symport/antiport; Traces
- Timed systems; with proteins

P System components

- membrane structure: several cell-membranes hierarchically embedded in a main membrane: the skin membrane
- the output membrane: one elementary membrane specified as the output
- regions (delimited by membranes)-contain objects and evolution rules

Symport/Antiport P Systems

- computation by communication only (no creation/destruction of objects)
- computational universality
- the rules correspond to well-known biochemical processes
- conservation law is observed
- the environment is an active participant to the computation

Timed P systems: motivation

- Closer to "nature" and biomolecular tools and techniques
- Time as support for computation
- Why time?
- Cell compute=cell accumulate the result
- Cell unhappy
- Cell adapt and behave unpredictably

FACS

- Fluorescence Activated Cell Sorter
- cells "undisturbed"
- a "feedback" mechanism is possible

Timed symport/antiport systems

- Normal symport/antiport systems
- The output could be considered also for non-halting computations
- The result is the time it takes the system to go from one pre-set configuration to the second pre-set configuration
[I barra 2005] O.H. I barra, A. Paun, Counting Time in Computing with Cells, DNA11 conference, 2005

Example

$$
\begin{aligned}
C_{\text {start }} & =a b c \\
C_{\text {stop }} & =a^{5} \quad \mathrm{ab}
\end{aligned}
$$

. Result: 4

(b,out; ab,in)

Timed systems results

- "Normal" symport/antiport systems results:
$\operatorname{NOP}_{3}\left(\right.$ sym $_{1}$, anti $\left._{1}\right)=\operatorname{NRE}-\{0,1,2,3,4\} \quad$ [Vaszil 2004]
$\mathrm{NOP}_{4}\left(\right.$ sym $_{1}$, anti $\left._{1}\right)=\operatorname{NRE}$
[Frisco 2004]
$\operatorname{NOP}_{1}\left(\right.$ sym $_{0}$, anti $\left._{2}\right)=N R E$
[Freund; Frisco 2002]
- Timed systems results:
$\mathrm{NTP}_{3}\left(\right.$ sym $_{1}$, anti $\left._{1}\right)=N R E$
$\operatorname{NTP}_{1}\left(\operatorname{sym}_{0}, a n t i_{2}\right)=N R E$

1 UC: proteins on membranes

Membranes with proteins

- Cell communication is done mostly using proteins
- Symport/antiport are performed through protein channels (limited parallelism)
- Defined in: A. Paun, B. Popa, P Systems with Proteins on Membranes, DLT 2006.

Motivation of research

- Extension to Symport/Antiport systems
- SA systems are widely studied but contain some non-natural features
- Max. parallelism forces us to forbid rules (a, in) for skin membrane and a in E

Motivation (contd.)

- We want to capture also the catalytic/enzymatic properties of transmembrane proteins or the ones localized at the membranes
- Current estimates put the number of these proteins at about 50\% of the total proteins of a cell

Motivation (contd.)

- The reactions helped by the membrane proteins cannot happen in a massively parallel manner
- The number of the proteins impose the upper bound for the number of reactions applied simultaneously

Types of rules

- Res

Type	Rule	Effect
1res	${ }_{i} p\left\|a \rightarrow{ }_{i} p\right\| b$	
	${ }_{i}{ }_{{ }_{i}} p\left\|\rightarrow b{ }_{i} p\right\|$	modify an object, but not move
2res	${ }_{{ }_{i} p} p\left\|a \rightarrow a{ }_{i} p\right\|$	
	$\left.{ }_{a}\right\|_{i} p\left\|\rightarrow{ }_{i} p\right\| a$	move an object, but not modify
3res	${ }_{i} p\left\|a \rightarrow b{ }_{i} p\right\|$	
	$\left.{ }_{a}\right\|_{i} p\left\|\rightarrow{ }_{i} p\right\| b$	modify and move one object
4res	$a{ }_{{ }_{i}} p\left\|b \rightarrow b{ }_{i} p\right\| a$	interchange two objects
5res	${ }_{i}\left\|{ }_{i} p\right\| b \rightarrow c{ }_{i} p \mid d$	interchange and modify two objects

Types of rules

- Cp

Type	Rule	Effect (besides changing also the protein)
1cp	$\begin{aligned} & { }_{i{ }_{i} p \mid a} p\left\|{ }_{[i}{ }^{\prime}\right\| \\ & a_{i}\|b\| \\ & a_{i} p\left\|\rightarrow b{ }_{[i} p^{\prime}\right\| \end{aligned}$	modify an object, but not move
2cp	$\begin{aligned} & \int_{i} p\left\|a \rightarrow a{ }_{{ }_{i}} p^{\prime}\right\| \\ & a{ }_{i} p\left\|\rightarrow{ }_{i}{ }^{\prime}\right\| \end{aligned}\|a\|$	move an object, but not modify
3cp	$\begin{aligned} & { }_{i} p \mid a \rightarrow b\left[_{i} p^{\prime} \mid\right. \\ & a{ }_{i} p\left\|\rightarrow{ }_{i}{ }^{\prime}\right\| \\ & a_{i} \mid b \end{aligned}$	modify and move one object
4cp	$a{ }_{i} p\left\|b \rightarrow b{ }_{i} p^{\prime}\right\| a$	interchange two objects
5 cp	$a{ }_{i} p\left\|b \rightarrow c{ }_{i} p\right\| d$	interchange and modify two objects

Examples

1res:

1cp:

Examples

a

2res:

a

2cp:

Examples

Results

$\operatorname{NOP}_{1}\left(\right.$ pro $\left._{2}, 2 c p\right)=$ NRE

2cp: uniport with change of protein

$$
\begin{aligned}
& a\left[p \mid->\left[p^{\prime} \mid a\right.\right. \\
& {\left[p \mid a->a\left[p^{\prime} \mid\right.\right.}
\end{aligned}
$$

Results

$\mathrm{NOP}_{1}\left(\right.$ pro $\left._{*}, 3 \mathrm{ff}\right)=\mathrm{NRE}$

I mproved later

2cp: modify and move one object

$$
a\left[p \mid->\left[p^{\prime} \mid b\right.\right.
$$

$$
\left[p \mid a->b\left[p^{\prime} \mid\right.\right.
$$

Results

$\mathrm{NOP}_{1}\left(\right.$ pro $\left._{2}, 2 r e s, 1 c p\right)=\mathrm{NRE}$

2res: uniport $a[p \mid->[p \mid a$ [p|a->a[p|

1cp:
[p|a->[p'|b $a\left[p \mid->b\left[p^{\prime} \mid\right.\right.$

Previous results in this area

- $\mathrm{NOP}_{1}\left(\right.$ pro $\left._{2}, 2 \mathrm{cpp}\right)=\mathrm{NRE}$
- NOP $_{1}\left(\right.$ pro $\left._{*}, 3 \mathrm{ffp}\right)=\mathrm{NRE}$
- NOP $_{1}\left(\right.$ pro $\left._{2}, 2 \mathrm{res}, 4 \mathrm{cpp}\right)=\mathrm{NRE}$
- $\mathrm{NOP}_{1}\left(\right.$ pro $\left._{2}, 2 \mathrm{res}, 1 \mathrm{cpp}\right)=\mathrm{NRE}$
- NOP $_{1}$ (pro*, 1res, 2 ffp)=NRE
- In [Paun Popa 2006]

More previous results (ffp)

- $\mathrm{NOP}_{1}\left(\mathrm{prO}_{7}, 3 \mathrm{ffp}\right)=\mathrm{NRE}$
- $\mathrm{NOP}_{1}\left(\right.$ pro $\left._{7}, 2 \mathrm{ff} p, 4 \mathrm{ffp}\right)=\mathrm{NRE}$
- $\mathrm{NOP}_{1}\left(\right.$ pro $_{10}$, 1 res, 2 ff p$)=\mathrm{NRE}$
[Krishna 2006]
- $\mathrm{NOP}_{1}\left(\mathrm{prO}_{7}, 1 \mathrm{ffp}, 2 \mathrm{ffp}\right)=\mathrm{NRE}$
- $\mathrm{NOP}_{1}\left(\mathrm{prO}_{9}, 1 \mathrm{ff} \mathrm{p}, 2 \mathrm{res}\right)=\mathrm{NRE}$
- $\mathrm{NOP}_{1}\left(\mathrm{prO}_{9}, 2 \mathrm{ff} \mathrm{p}, 3 \mathrm{res}\right)=\mathrm{NRE}$
- $\mathrm{NOP}_{1}\left(\right.$ pro $\left._{8}, 1 \mathrm{ffp}, 3 \mathrm{res}\right)=\mathrm{NRE}$
- $\mathrm{NOP}_{1}\left(\right.$ pro $\left._{9}, 4 \mathrm{ff} p, 3 \mathrm{res}\right)=\mathrm{NRE}$
- $\mathrm{NOP}_{1}\left(\mathrm{prO}_{8}, 2 \mathrm{ff} \mathrm{p}, 5 \mathrm{res}\right)=\mathrm{NRE}$

Description of proof technique

- In [Paun Popa 2006] we used the proteins to control the simulation of each type of rule and usually as a Program Counter in the register machine
- In [Krishna 2006] the novel idea was to simulate with each protein a specific rule type associated with a specific register: all Sub(r1,XXX,YYY) use same protein

New results

- OLD: NOP_{1} (prog $\left._{9}, 4 \mathrm{ffp}, 3 r e s\right)=$ NRE
- OLDISH: NOP $_{1}\left(\right.$ pro $\left._{8}, 4 f f p, 3 r e s\right)=$ NRE
- NEW, time: NTOP $_{1}$ (pro ${ }_{7}, 4 \mathrm{ffp}, 3 \mathrm{res}$)=NRE
- NEW: NOP $_{1}$ (pro ${ }_{7}, 4$ ffp,3res) $=$ NRE

New results (2)

- Old: $\mathrm{NOP}_{1}\left(\right.$ pro $\left._{8}, 2 \mathrm{ffp}, 5 \mathrm{res}\right)=\mathrm{NRE}$
- Oldish: NOP $_{1}$ (pro ${ }_{7}$, 2ffp,5res)=NRE
- New, time: NTOP $_{1}\left(\right.$ pro $\left._{3}, 2 \mathrm{ffp}, 5 \mathrm{res}\right)=$ NRE
- New: $\mathrm{NOP}_{1}\left(\right.$ pro $\left._{4}, 2 \mathrm{ffp}, 5 \mathrm{res}\right)=\mathrm{NRE}$
- limited parallelism
- P systems with proteins on membranes enforce $\leq n$-Parallelism where n is the number of proteins
- Some of the results require unbounded number of proteins, thus normal parallelism

1 UC: Spiking Systems

SNP

Represented as directed graph.
Neurons: nodes. Synapses: directed edges.
Only one symbol a used (to represent spike).
Initial configuration: spikes distributed in the neurons.
Number of spikes n in neuron is represented by string a^{n}.
Spikes are created and sent along all outgoing synapses from a neuron when that neuron 'fires'.

- Maximal parallelism:
- At each step, all fireable neurons must fire.
- Each fireable neuron fires using one of the rules in the neuron, chosen nondeterministically.

- Firing with a delay: $B a \rightarrow a, t$
- Neuron is 'closed' during the time delay, t
- A closed neuron is inactive (does not fire \& loses any spikes sent to it) during the delay.

Motivation of study

- Previous maximal parallelism drawbacks
- The spikes are transmitted much faster than any signalling pathway
- More "spikes" stored=>more probable to spike
- It was observed that the neurons which receive many spikes, tend to fire more often

Motivation 2

- Same assumptions in "integrate-andfire" moral:n~.......
- Assume instantly

Extension

Max sequentiality:

- From the system only the neuron with the maximum number of spikes (and active) will fire next.
- If more than one neuron are active at the same time and hold the maximum number of spikes, then we choose nondeterministically between them.

Max pseudo-sequentiality: allow to fire all the neurons that are active and hold the max number of spikes

Simulating the ADD module

Simulating the SUB module

Results overview

- Max pseudosequentiality requires 104 neurons for universality
- Extended systems in max sequentiality: 90 (now 70) neurons needed
- Max strong sequentiality: not yet bounded the number of neurons for non-extended neurons
- Min sequentiality: a bit more complicated in the SUB module

2 Systems Biology (2 SB)

Complexity of Signal Transduction Pathways

Epidermal Growth Factor Receptor Pathway Map _-_

Motivation 2

- ODE: hard to update, gives average behavior, assumes large numbers of molecules
- Not always good simulation results
- Gillespie: slow
- membrane systems: easy to update, fast, discrete (different than ODE)

Alternative simulation method

- ODE assumes large numbers of copies of each type simulated
- membrane systems "process" each reaction/molecule individually (discrete system)
- Signaling pathways: small numbers of molecules, thus we believe it is better to use membrane systems

Comparison of the simulation methods

Preliminary results

- Simulation very close to biological observations
- Several orders of magnitude faster than Gillespie (3.5min vs. 6 hours)
- Extensible (easy to add new reactions)
- JAVA implementation accepts SBML input

I mprovements

- Nondeterministic behavior of the system
- Implementation of a heap rather than sorting of reaction times at each step (reduces the time complexity of one step in the simulation from $O(n \log n)$ to $\mathrm{O}(\log \mathrm{n})$ where n is the number of rules simulated)

Circadian Rhythm Model

- To illustrate the effectiveness of our technique on an existing model, we consider the Circadian Rhythm model described in [Vilar 02]
- This model was designed to show intrinsic biochemical noise can induce oscillations

Circadian Rhythm Model

Circadian Rhythm Results

Circadian Rhythm Results (NWT)

Lotka-Voltera Model

Lotka-Volterra Model

Simulation of HIV influence on FAS apoptosis

- The previous model for apoptosis extended to include proteins from the HIV
- Most studied HIV-1 (99\% of infections)
- Nov 21, 2006 WHO: HIV is pandemic
- 1\% of the world population infected
- 7.3\% of infected people died in 2006

Apoptosis important in HIV

- Infects immune cells
- Initial infection through the R5 strand (co-receptor CCR5)
- After immune system is weakened (by apoptosis) X 4 variant of the virus is more predominant (CXCR4 co-receptor)
- X4 emerges through mutations from R5

HIV latency

- Infected CD4+ T cells can become memory cells
- the main obstacle against HIV cure
- We model the apoptosis in the infected T cells: both active and dormant

HIV Proteins

Simulation of apoptosis in infected cells, both latent and non-latent

tBid signals the induction of the type II pathway

. non-latent

post-latent

Meaning

- Administer the cocktail of drugs
- Re-activate the memory T cells
- Keep patient alive for 42 hours
- Cytotoxicity
- HIV virus would not be in the T cells

Simulation of latent cells

- These are the first results reported about the length of life of a latently infected cell that is re-activated
- Due to the scarcity of the experiments on latent cells
- Re-activated cells live about 6 hours less than the normally infected cells (42 vs 48 hours)

Future work for SB area

- Implementation / simulation of cells
- Stochastic approach for the STP simulations
- improvement of current results
- other (better) models

3 FA: Cover Automata

- DFA with a counter, for finite languages
- Variation of Hopcroft's algorithm exists
- Still O(n $\log \mathrm{n})$
- We have still determinsm
- We lose the uniquess of the minimal machine
- In real life around 7\% improvement

3 FA: Hopcroft's algorithm

- Hopcroft's algorithm is the best known algorithm for minimization of (general) DFA
- An upper bound on the runtime of the algorithm was proven in the original paper by Hopcroft, but no lower bound was given since

Hopcroft's algorithm

- Described in 1971 in 7 pages
- Has time complexity of $O(n \log n)$ and space complexity of O(n)
- Finds a partition according to the equivalance relation on states

Hopcroft's algorithm

- Starts with the coarsest partiton on states (F , Q-F) and refines this partition according to the "splitting" of states in the partition
- This splitting of states proceeds somehow in a backward manner: two states from the same partition that go with the same letter in different partitions are split
- Continue this until no more splitting is possible

Hopcroft's algorithm

1. $P=\{F, Q-F\}$
2. For all a in \sum add $(\min (F, Q-F), a)$ to S
3. While $S \neq \varnothing$ do
4. get (C, a) from S
5. for each B in P that is split by (C, a) do
6. replace B in P by both B^{\prime} and $B^{\prime \prime}$
7. for all b in \sum do

8
9.
if (B, b) in S then replace it by $\left(B^{\prime}, b\right)$ and $\left(B^{\prime \prime}, b\right)$ else add ($\left.\min \left(B^{\prime}, B^{\prime \prime}\right), b\right)$ to S

Implementation choices

- There are three points of flexibility for implementation of the algorithm
- In line 2: the strategy for S
- In line 9: if $\left|B^{\prime}\right|=\left|B^{\prime \prime}\right|$ which one is added to S
- And in line 8: according to the implementation of S how is B^{\prime} and $\mathrm{B}^{\prime \prime}$ replacing B

Results for DFA

- In the worst case scenario (queue implementation) for unary languages with 2^{n} states we have:
- Final states=non final states= 2^{n-1}
- Final states preceeding final states: 2^{n-2} etc.
- The worst possible case is reached by deBruijn words:
- Every possible word of length 3 appears exactly once
- Automaton for $\mathrm{n}=3$

- Solutie similara pentru DFCA

Stack is better than queue

- The absolute worst case run-time complexity for the Hopcroft's minimization algorithm for DFCA for unary languages is reached when the splitter list S in the algorithm is following a FIFO strategy and only for automata having a structure induced by de Bruijn words of size n.
- In that setting the algorithm will pass through the queue S exactly $n 2^{n-1}$ states for the input automaton of size $2^{\text {n }}$. Thus for m states of the input automaton we have exactly $\mathrm{m} / 2 \log _{2} \mathrm{~m}$ states passing through S .
- (linear for stack, $O(n \log n)$ for queue)

Other DFCA result (2005)

- Incremental construction of DFCA (save space and time)

Algorithm	States	Memory req.	Time/time with trie	l	$\# \Sigma$
Körner	3905	70 k	$1.512 \mathrm{~s} / 1.961 \mathrm{~s}$	5	5
Incremnt.	18	1.8 k	0.461 s	5	5
Körner	19530	1.4 M	$40.52 \mathrm{~s} / 52.706 \mathrm{~s}$	6	5
Incremnt.	21	2.2 k	3.196 s	6	5
Körner	97655	7.0 M	$24 \min 49.26 \mathrm{~s} / 34 \min 6.944 \mathrm{~s}$	7	5
Incremnt.	24	2.7 k	22.420 s	7	5

Future work: cover automata

- Experiments on different languages and different implementation strategies
- Experiments on random languages
- Study the case of "random" changes of the strategy between LIFO and FIFO
- Union of two cover automata with different I-s

4 Plan for future (ideas)

- DFCA used for counting the number of nullomers in GenBank
- DFCA for compression of genomes
- Log-gain procedure developed by V. Manca verify the stability to noise
- RECRUIT good PhD students

