
Unconventional Computing and
Systems Biology, Finite Automata

Andrei Paun
Dept of Artificial Intelligence, UPM

John Jack
North Carolina State University

Summary
 1. Unconventional Computing (UC)

 Spiking P Systems
 Proteins on membranes

 2. Systems Biology (SB)
 Discrete simulations

 Simulating latency in HIV
 3. Finite Automata (FA)

 Cover automata
 Results

1 UC: motivation
 Compute with cells
 Now we can manipulate cells better
 Parallelism
 Limits to the current silicone computer

Membrane’s Structure

Transversal view

Picture from
 http://ntri.tam

uk.edu/cell/m
em

branes.htm
l

Building block

Trans-membrane transport
 trans-membrane transfer of molecules

can take place in three main ways:
 active transport
 passive transport
 vesicle-mediated transport

Active transport

Done through protein channels

Membrane Computing
 biochemical inspiration (compute with cells)
 parallel computing devices
 distributed computing devices
 many variants

 Symport/antiport; Traces
 Timed systems; with proteins

P System components

 membrane structure: several cell-membranes
hierarchically embedded in a main membrane: the
skin membrane

 the output membrane: one elementary membrane
specified as the output

 regions (delimited by membranes)-contain objects
and evolution rules

Symport/Antiport P Systems
 computation by communication only (no

creation/destruction of objects)
 computational universality
 the rules correspond to well-known biochemical

processes
 conservation law is observed
 the environment is an active participant to the

computation

Timed P systems: motivation
 Closer to “nature” and biomolecular tools

and techniques
 Time as support for computation
 Why time?

 Cell compute=cell accumulate the result
 Cell unhappy
 Cell adapt and behave unpredictably

FACS

 Fluorescence
Activated Cell Sorter

 cells “undisturbed”

 a “feedback”
mechanism is
possible

Timed symport/antiport systems

 Normal symport/antiport systems
 The output could be considered also for

non-halting computations
 The result is the time it takes the

system to go from one pre-set
configuration to the second pre-set
configuration

[Ibarra 2005] O.H. Ibarra, A. Paun, Counting Time in Computing with Cells,
DNA11 conference, 2005

Example

b

 Result: 4

startC abc=

5
stopC a=

c

(b,out; ab,in)

a b
a

a
a

a b
a

a b
a

a

a b
a

a

a b
a

a

Timed systems results
 “Normal” symport/antiport systems results:

 Timed systems results:

3 1 1NOP (,) {0,1,2,3,4} [Vaszil 2004]sym anti NRE= −

4 1 1NOP (,) [Frisco 2004]sym anti NRE=

1 0 2NOP (,) [Freund; Frisco 2002] sym anti NRE=

3 1 1NTP (,) sym anti NRE=

1 0 2NTP (,) sym anti NRE=

1 UC: proteins on membranes

Membranes with proteins
 Cell communication is done mostly using

proteins
 Symport/antiport are performed through

protein channels (limited parallelism)

 Defined in: A. Paun, B. Popa, P Systems with
Proteins on Membranes, DLT 2006.

Motivation of research
 Extension to Symport/Antiport systems
 SA systems are widely studied but contain

some non-natural features

 Max. parallelism forces us to forbid rules
(a,in) for skin membrane and a in E

Motivation (contd.)
 We want to capture also the

catalytic/enzymatic properties of trans-
membrane proteins or the ones
localized at the membranes

 Current estimates put the number of
these proteins at about 50% of the
total proteins of a cell

Motivation (contd.)
 The reactions helped by the membrane

proteins cannot happen in a massively
parallel manner

 The number of the proteins impose the
upper bound for the number of
reactions applied simultaneously

Types of rules
 Res

Types of rules
 Cp

Examples

a b
[p|a -> [p|b p p

1res:

a b
[p|a -> [p’|b p p’

1cp:

a b

a[p| -> b[p| p p
1res:

Examples

a

a

[p|a -> a[p| p p
2res:

a
a[p| -> [p’|a p p’

2cp:

a

Examples

a
a[p|b -> b[p’|a p p’

4cp:

a

b

b

a

a

b[p|a -> a[p|b p
4res: b

b

p

Results

p p’

2cp

2cp: uniport with change of protein
a[p|->[p’|a
[p|a->a[p’|

1 2NOP (,2) NREpro cp =

Results

p1 pn

3ff
2cp: modify and move one object

a[p|->[p’|b
[p|a->b[p’|

1 *NOP (,3) NREpro ff =

p2

Improved later

Results

p p’

2res, 1cp

2res: uniport
a[p|->[p|a
[p|a->a[p|

1cp:

[p|a->[p’|b
a[p|->b[p’|

1 2NOP (,2 ,1) NREpro res cp =

Previous results in this area
 NOP1(pro2, 2cpp)=NRE
 NOP1(pro*, 3ffp)=NRE
 NOP1(pro2, 2res,4cpp)=NRE
 NOP1(pro2, 2res, 1cpp)=NRE
 NOP1(pro*, 1res, 2ffp)=NRE

 In [Paun Popa 2006]

More previous results (ffp)
 NOP1(pro7, 3ffp)=NRE
 NOP1(pro7, 2ffp, 4ffp)=NRE
 NOP1(pro10, 1res,2ffp)=NRE
 NOP1(pro7, 1ffp,2ffp)=NRE
 NOP1(pro9, 1ffp,2res)=NRE
 NOP1(pro9, 2ffp,3res)=NRE
 NOP1(pro8, 1ffp,3res)=NRE
 NOP1(pro9, 4ffp,3res)=NRE
 NOP1(pro8, 2ffp,5res)=NRE

[Krishna 2006]

Description of proof technique
 In [Paun Popa 2006] we used the proteins to

control the simulation of each type of rule
and usually as a Program Counter in the
register machine

 In [Krishna 2006] the novel idea was to
simulate with each protein a specific rule type
associated with a specific register: all
Sub(r1,XXX,YYY) use same protein

New results
 OLD: NOP1(pro9, 4ffp,3res)=NRE
 OLDISH: NOP1(pro8, 4ffp,3res)=NRE

 NEW, time: NTOP1(pro7, 4ffp,3res)=NRE
 NEW: NOP1(pro7, 4ffp,3res)=NRE

New results (2)
 Old: NOP1(pro8, 2ffp,5res)=NRE
 Oldish: NOP1(pro7, 2ffp,5res)=NRE

 New, time: NTOP1(pro3, 2ffp,5res)=NRE
 New: NOP1(pro4, 2ffp,5res)=NRE

 limited parallelism
 P systems with proteins on membranes

enforce ≤ n-Parallelism where n is the
number of proteins

 Some of the results require unbounded
number of proteins, thus normal
parallelism

1 UC: Spiking Systems

 SNP

Represented as directed graph.

Neurons: nodes. Synapses: directed edges.

Only one symbol a used (to represent spike).

Initial configuration: spikes distributed in the neurons.

Number of spikes n in neuron is represented by string an.

Spikes are created and sent along all outgoing synapses
from a neuron when that neuron ‘fires’.

 Maximal parallelism:
 At each step, all fireable neurons must fire.
 Each fireable neuron fires using one of the rules in

the neuron, chosen nondeterministically.

a2
(a2)*/a→a;

0
a → λ

a
a → a;0
a → a;1

a3
a7/a3 → a;0

a3→ a;1
a2 → λ

 Firing with a delay: E/aj → a;t
 Neuron is ‘closed’ during the time delay,

t
 A closed neuron is inactive (does not

fire & loses any spikes sent to it) during
the delay.

Motivation of study
 Previous maximal parallelism drawbacks
 The spikes are transmitted much faster

than any signalling pathway
 More “spikes” stored=>more probable

to spike
 It was observed that the neurons which

receive many spikes, tend to fire more
often

Motivation 2

 Same assumptions in “integrate-and-
fire” modeling work

 Assume the spike is transmitted
instantly

Extension
 Max sequentiality:

 From the system only the neuron with the
maximum number of spikes (and active) will fire
next.

 If more than one neuron are active at the same
time and hold the maximum number of spikes,
then we choose nondeterministically between
them.

Max pseudo-sequentiality: allow to fire all the

neurons that are active and hold the max number
of spikes

Simulating the ADD module

Simulating the SUB module

Results overview
 Max pseudosequentiality requires 104

neurons for universality
 Extended systems in max sequentiality:

90 (now 70) neurons needed
 Max strong sequentiality: not yet

bounded the number of neurons for
non-extended neurons

 Min sequentiality: a bit more
complicated in the SUB module

2 Systems Biology (2 SB)

Complexity of Signal
Transduction Pathways

Kitano et al

Motivation 2
 ODE: hard to update, gives average behavior,

assumes large numbers of molecules
 Not always good simulation results

 Gillespie: slow

 membrane systems: easy to update, fast,

discrete (different than ODE)

Alternative simulation method
 ODE assumes large numbers of copies

of each type simulated
 membrane systems “process” each

reaction/molecule individually (discrete
system)

 Signaling pathways: small numbers of
molecules, thus we believe it is better
to use membrane systems

Comparison of the simulation
methods

Preliminary results
 Simulation very close to biological

observations
 Several orders of magnitude faster than

Gillespie (3.5min vs. 6 hours)
 Extensible (easy to add new reactions)
 JAVA implementation accepts SBML

input

Improvements
 Nondeterministic behavior of the

system
 Implementation of a heap rather than

sorting of reaction times at each step
(reduces the time complexity of one
step in the simulation from O(n log n)
to O(log n) where n is the number of
rules simulated)

Circadian Rhythm Model

 To illustrate the effectiveness of
our technique on an existing model,
we consider the Circadian Rhythm
model described in [Vilar 02]

 This model was designed to show
intrinsic biochemical noise can
induce oscillations

Circadian Rhythm Model

Circadian Rhythm Results

A B

Circadian Rhythm Results (NWT)

Lotka-Voltera Model

Lotka-Volterra Model

Simulation of HIV influence on
FAS apoptosis
 The previous model for apoptosis

extended to include proteins from the
HIV

 Most studied HIV-1 (99% of infections)
 Nov 21, 2006 WHO: HIV is pandemic
 1% of the world population infected
 7.3% of infected people died in 2006

Apoptosis important in HIV
 Infects immune cells
 Initial infection through the R5 strand

(co-receptor CCR5)
 After immune system is weakened (by

apoptosis) X4 variant of the virus is
more predominant (CXCR4 co-receptor)

 X4 emerges through mutations from R5

HIV latency
 Infected CD4+ T cells can become

memory cells
 the main obstacle against HIV cure

 We model the apoptosis in the infected

T cells: both active and dormant

HIV Proteins

HIV Proteins

Simulation of apoptosis in infected cells, both latent and
non-latent

tBid signals the induction of the type II pathway

 non-latent post-latent

Meaning

 Administer the cocktail of drugs
 Re-activate the memory T cells
 Keep patient alive for 42 hours

 Cytotoxicity
 HIV virus would not be in the T cells

Simulation of latent cells
 These are the first results reported about the

length of life of a latently infected cell that is
re-activated

 Due to the scarcity of the experiments on
latent cells

 Re-activated cells live about 6 hours less than
the normally infected cells (42 vs 48 hours)

 Future work for SB area
 Implementation / simulation of cells

 Stochastic approach for the STP simulations
 improvement of current results
 other (better) models

3 FA: Cover Automata
 DFA with a counter, for finite languages
 Variation of Hopcroft’s algorithm exists
 Still O(n log n)
 We have still determinsm
 We lose the uniquess of the minimal

machine
 In real life around 7% improvement

 Hopcroft’s algorithm is the best known
algorithm for minimization of (general)
DFA

 An upper bound on the runtime of the
algorithm was proven in the original
paper by Hopcroft, but no lower bound
was given since

3 FA: Hopcroft’s algorithm

Hopcroft’s algorithm
 Described in 1971 in 7 pages

 Has time complexity of O (n log n) and

space complexity of O(n)

 Finds a partition according to the
equivalance relation on states

Hopcroft’s algorithm
 Starts with the coarsest partiton on states (F,

Q-F) and refines this partition according to
the “splitting” of states in the partition

 This splitting of states proceeds somehow in
a backward manner: two states from the
same partition that go with the same letter in
different partitions are split

 Continue this until no more splitting is
possible

Hopcroft’s algorithm
1. P={F, Q-F}
2. For all a in ∑ add (min(F, Q-F),a) to S
3. While S≠ø do
4. get (C,a) from S
5. for each B in P that is split by (C,a) do
6. replace B in P by both B’ and B’’
7. for all b in∑ do
8. if (B,b) in S then replace it by (B’,b) and (B’’, b)
9. else add (min(B’,B’’),b) to S

Implementation choices
 There are three points of flexibility for

implementation of the algorithm
 In line 2: the strategy for S
 In line 9: if |B’|=|B’’| which one is

added to S
 And in line 8: according to the

implementation of S how is B’ and B’’
replacing B

Results for DFA
 In the worst case scenario (queue

implementation) for unary languages
with 2n states we have:

 Final states=non final states= 2n-1
 Final states preceeding final states: 2n-2

 etc.

 The worst possible case is reached
by deBruijn words:

 Every possible word
of length 3 appears
exactly once

 Automaton for n=3

 Solutie similara pentru DFCA

Stack is better than queue
 The absolute worst case run-time complexity for the

Hopcroft's minimization algorithm for DFCA for unary
languages is reached when the splitter list S in the
algorithm is following a FIFO strategy and only for
automata having a structure induced by de Bruijn
words of size n.

 In that setting the algorithm will pass through the
queue S exactly n2n-1 states for the input automaton
of size 2n. Thus for m states of the input automaton
we have exactly m/2 log2m states passing through S.

 (linear for stack, O(n log n) for queue)

Other DFCA result (2005)
 Incremental construction of DFCA (save

space and time)

Future work: cover automata
 Experiments on different languages and

different implementation strategies
 Experiments on random languages
 Study the case of “random” changes of the

strategy between LIFO and FIFO
 Union of two cover automata with different

l-s

4 Plan for future (ideas)
 DFCA used for counting the number of

nullomers in GenBank
 DFCA for compression of genomes
 Log-gain procedure developed by V.

Manca verify the stability to noise
 RECRUIT good PhD students

Thank you !!!

	Unconventional Computing and Systems Biology, Finite Automata
	Summary
	1 UC: motivation
	Membrane’s Structure
	Trans-membrane transport
	Active transport
	Membrane Computing
	P System components
	Symport/Antiport P Systems
	Timed P systems: motivation
	FACS
	Timed symport/antiport systems
	Example
	Timed systems results
	1 UC: proteins on membranes
	Membranes with proteins
	Motivation of research
	Motivation (contd.)
	Motivation (contd.)
	Types of rules
	Types of rules
	Examples
	Examples
	Examples
	Results
	Results
	Results
	Previous results in this area
	More previous results (ffp)
	Description of proof technique
	New results
	New results (2)
	Slide Number 38
	1 UC: Spiking Systems
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Motivation of study
	Motivation 2
	Extension
	Simulating the ADD module
	Simulating the SUB module
	Results overview
	2 Systems Biology (2 SB)
	Complexity of Signal Transduction Pathways
	Motivation 2
	Alternative simulation method
	Comparison of the simulation methods
	Preliminary results
	Improvements
	Circadian Rhythm Model
	Circadian Rhythm Model
	Circadian Rhythm Results
	Circadian Rhythm Results (NWT)
	Lotka-Voltera Model
	Lotka-Volterra Model
	Simulation of HIV influence on FAS apoptosis
	Apoptosis important in HIV
	HIV latency
	HIV Proteins
	Simulation of apoptosis in infected cells, both latent and non-latent
	tBid signals the induction of the type II pathway
	Slide Number 71
	Meaning
	Simulation of latent cells
	 Future work for SB area
	3 FA: Cover Automata
	Slide Number 76
	Hopcroft’s algorithm
	Hopcroft’s algorithm
	Hopcroft’s algorithm
	Implementation choices
	Results for DFA
	Slide Number 86
	Stack is better than queue
	Other DFCA result (2005)
	Future work: cover automata
	4 Plan for future (ideas)
	Slide Number 92

