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Summary 
 1. Unconventional Computing (UC) 

 Spiking P Systems  
 Proteins on membranes 

 2. Systems Biology (SB) 
 Discrete simulations 

 Simulating latency in HIV 
 3. Finite Automata (FA) 

 Cover automata 
 Results 



1 UC: motivation 
 Compute with cells 
 Now we can manipulate cells better 
 Parallelism 
 Limits to the current silicone computer 



Membrane’s Structure 

Transversal view 

Picture from
 http://ntri.tam

uk.edu/cell/m
em

branes.htm
l 

Building block 



Trans-membrane transport 
 trans-membrane transfer of molecules 

can take place in three main ways: 
 active transport 
 passive transport 
 vesicle-mediated transport 
 



Active transport 

Done through protein channels 



Membrane Computing 
 biochemical inspiration (compute with cells) 
 parallel computing devices 
 distributed computing devices 
 many variants 

 Symport/antiport; Traces 
 Timed systems; with proteins 



P System components 

 membrane structure: several cell-membranes 
hierarchically embedded in a main membrane: the 
skin membrane 
 

 the output membrane: one elementary membrane 
specified as the output 
 

 regions (delimited by membranes)-contain objects 
and evolution rules 



Symport/Antiport P Systems 
 computation by communication only (no 

creation/destruction of objects) 
 computational universality 
 the rules correspond to well-known biochemical 

processes 
 conservation law is observed 
 the environment is an active participant to the 

computation 



Timed P systems: motivation  
 Closer to “nature” and biomolecular tools 

and techniques 
 Time as support for computation 
 Why time? 

 Cell compute=cell accumulate the result 
 Cell unhappy  
 Cell adapt and behave unpredictably 



FACS 

  Fluorescence 
Activated Cell Sorter 

 cells “undisturbed” 
 

 a “feedback” 
mechanism is 
possible   



Timed symport/antiport systems 

 Normal symport/antiport systems 
 The output could be considered also for 

non-halting computations 
 The result is the time it takes the 

system to go from one pre-set 
configuration to the second pre-set 
configuration 

[Ibarra 2005] O.H. Ibarra, A. Paun, Counting Time in Computing with Cells,  
DNA11 conference, 2005    



Example 
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 Result: 4 
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(b,out; ab,in) 

a  b   
a   

a   
a   

a  b   
a   

a  b   
a   

a   

a  b   
a   

a   

a  b   
a   

a   



Timed systems results 
 “Normal” symport/antiport systems results: 

 
 
 
 

 Timed systems results: 

3 1 1NOP ( , ) {0,1,2,3,4}   [Vaszil 2004]sym anti NRE= −

4 1 1NOP ( , )                       [Frisco 2004]sym anti NRE=

1 0 2NOP ( , )                    [Freund; Frisco 2002]  sym anti NRE=

3 1 1NTP ( , )  sym anti NRE=

1 0 2NTP ( , )  sym anti NRE=



1 UC: proteins on membranes 
 



Membranes with proteins 
 Cell communication is done mostly using 

proteins 
 Symport/antiport are performed through 

protein channels (limited parallelism) 
 

 Defined in: A. Paun, B. Popa, P Systems with 
Proteins on Membranes, DLT 2006. 



Motivation of research 
 Extension to Symport/Antiport systems 
 SA systems are widely studied but contain 

some non-natural features 
 

 Max. parallelism forces us to forbid rules 
(a,in) for skin membrane and a in E 



Motivation (contd.) 
 We want to capture also the 

catalytic/enzymatic properties of trans-
membrane proteins or the ones 
localized at the membranes 
 

 Current estimates put the number of 
these proteins at about 50% of the 
total proteins of a cell 
 



Motivation (contd.) 
 The reactions helped by the membrane 

proteins cannot happen in a massively 
parallel manner 
 

 The number of the proteins impose the 
upper bound for the number of 
reactions applied simultaneously 



Types of rules 
 Res 



Types of rules 
 Cp 



Examples 

a b 
[p|a -> [p|b p p 

1res:  

a b 
[p|a -> [p’|b p p’ 

1cp:  

a b 

a[p| -> b[p| p p 
1res:  



Examples 

a 

a 

[p|a -> a[p| p p 
2res:  

a 
a[p| -> [p’|a p p’ 

2cp:  

a 



Examples 

a 
a[p|b -> b[p’|a p p’ 

4cp:  

a 

b 

b 

a 

a 

b[p|a -> a[p|b p 
4res:  b 

b 

p 



Results 

p p’ 

2cp  

2cp: uniport with change of protein 
a[p|->[p’|a 
[p|a->a[p’| 

 

1 2NOP ( ,2 ) NREpro cp =



Results 

p1 pn 

3ff  
2cp: modify and move one object 

a[p|->[p’|b 
[p|a->b[p’| 

 

1 *NOP ( ,3 ) NREpro ff =

p2 

Improved later 



Results 

p p’ 

2res, 1cp  

2res: uniport             
a[p|->[p|a 
[p|a->a[p| 

 
1cp:  

[p|a->[p’|b 
a[p|->b[p’| 

 
 

1 2NOP ( ,2 ,1 ) NREpro res cp =



Previous results in this area 
 NOP1(pro2, 2cpp)=NRE 
 NOP1(pro*, 3ffp)=NRE 
 NOP1(pro2, 2res,4cpp)=NRE 
 NOP1(pro2, 2res, 1cpp)=NRE 
 NOP1(pro*, 1res, 2ffp)=NRE 

 
 In [Paun Popa 2006] 



More previous results (ffp) 
 NOP1(pro7, 3ffp)=NRE 
 NOP1(pro7, 2ffp, 4ffp)=NRE 
 NOP1(pro10, 1res,2ffp)=NRE 
 NOP1(pro7, 1ffp,2ffp)=NRE 
 NOP1(pro9, 1ffp,2res)=NRE 
 NOP1(pro9, 2ffp,3res)=NRE 
 NOP1(pro8, 1ffp,3res)=NRE 
 NOP1(pro9, 4ffp,3res)=NRE 
 NOP1(pro8, 2ffp,5res)=NRE 

 
 
 

[Krishna 2006] 



Description of proof technique 
 In [Paun Popa 2006] we used the proteins to 

control the simulation of each type of rule 
and usually as a Program Counter in the 
register machine 

 In [Krishna 2006] the novel idea was to 
simulate with each protein a specific rule type 
associated with a specific register: all 
Sub(r1,XXX,YYY) use same protein 



New results 
 OLD: NOP1(pro9, 4ffp,3res)=NRE 
 OLDISH: NOP1(pro8, 4ffp,3res)=NRE 

 
 NEW, time: NTOP1(pro7, 4ffp,3res)=NRE 
 NEW: NOP1(pro7, 4ffp,3res)=NRE 

 



New results (2) 
 Old: NOP1(pro8, 2ffp,5res)=NRE 
 Oldish: NOP1(pro7, 2ffp,5res)=NRE 

 
 New, time: NTOP1(pro3, 2ffp,5res)=NRE 
 New: NOP1(pro4, 2ffp,5res)=NRE 

 
 
 



 limited parallelism 
 P systems with proteins on membranes 

enforce ≤ n-Parallelism where n is the 
number of proteins  

 Some of the results require unbounded 
number of proteins, thus normal 
parallelism 
 



1 UC: Spiking Systems 
 



                                         SNP 
 
Represented as directed graph.  
 
Neurons: nodes.  Synapses: directed edges. 

 
Only one symbol  a  used (to represent spike). 
 
Initial configuration:  spikes distributed in the neurons. 
 
Number of spikes n in neuron is represented by string an. 
 
Spikes are created and sent along all outgoing synapses 
from a neuron when that neuron ‘fires’. 

 



 Maximal parallelism: 
 At each step, all fireable neurons must fire. 
 Each fireable neuron fires using one of the rules in 

the neuron, chosen nondeterministically. 
     

a2 
(a2)*/a→a;

0 
a → λ 

a 
a → a;0 
a → a;1 

a3 
a7/a3 → a;0 

a3→ a;1 
a2 → λ 



 Firing with a delay:  E/aj → a;t 
 Neuron is ‘closed’ during the time delay, 

t 
 A closed neuron is inactive (does not 

fire & loses any spikes sent to it) during 
the delay. 

 



Motivation of study 
 Previous maximal parallelism drawbacks 
 The spikes are transmitted much faster 

than any signalling pathway 
 More “spikes” stored=>more probable 

to spike 
 It was observed that the neurons which 

receive many spikes, tend to fire more 
often 



Motivation 2 

 Same assumptions in “integrate-and-
fire” modeling work 
 

 Assume the spike is transmitted 
instantly 
 



Extension 
 Max sequentiality: 

 From the system only the neuron with the 
maximum number of spikes (and active) will fire 
next.  

 If more than one neuron are active at the same 
time and hold the maximum number of spikes, 
then we choose nondeterministically between 
them. 

 
Max pseudo-sequentiality: allow to fire all the 

neurons that are active and hold the max number 
of spikes 



Simulating the ADD module 



Simulating the SUB module 



Results overview 
 Max pseudosequentiality requires 104 

neurons for universality 
 Extended systems in max sequentiality: 

90 (now 70) neurons needed 
 Max strong sequentiality: not yet 

bounded the number of neurons for 
non-extended neurons 

 Min sequentiality: a bit more 
complicated in the SUB module 



2 Systems Biology (2 SB) 
 



Complexity of Signal 
Transduction Pathways 

Kitano et al 



Motivation 2 
 ODE: hard to update, gives average behavior, 

assumes large numbers of molecules  
 Not always good simulation results 

 
 Gillespie: slow 

 
 membrane systems: easy to update, fast, 

discrete (different than ODE) 
 



Alternative simulation method 
 ODE assumes large numbers of copies 

of each type simulated 
 membrane systems “process” each 

reaction/molecule individually (discrete 
system) 

 Signaling pathways: small numbers of 
molecules, thus we believe it is better 
to use membrane systems 



Comparison of the simulation 
methods 



Preliminary results 
 Simulation very close to biological 

observations 
 Several orders of magnitude faster than 

Gillespie (3.5min vs. 6 hours) 
 Extensible (easy to add new reactions) 
 JAVA implementation accepts SBML 

input 



Improvements 
 Nondeterministic behavior of the 

system 
 Implementation of a heap rather than 

sorting of reaction times at each step 
(reduces the time complexity of one 
step in the simulation from O(n log n) 
to O(log n) where n is the number of 
rules simulated)  



Circadian Rhythm Model 

 To illustrate the effectiveness of 
our technique on an existing model, 
we consider the Circadian Rhythm 
model described in [Vilar 02] 

 

 This model was designed to show 
intrinsic biochemical noise can 
induce oscillations 



Circadian Rhythm Model 



Circadian Rhythm Results 

A B 



Circadian Rhythm Results (NWT) 



Lotka-Voltera Model 



Lotka-Volterra Model 



Simulation of HIV influence on  
FAS apoptosis  
 The previous model for apoptosis 

extended to include proteins from the 
HIV 

 Most studied HIV-1 (99% of infections) 
 Nov 21, 2006 WHO: HIV is pandemic 
 1% of the world population infected 
 7.3% of infected people died in 2006 



Apoptosis important in HIV 
 Infects immune cells 
 Initial infection through the R5 strand 

(co-receptor CCR5) 
 After immune system is weakened (by 

apoptosis) X4 variant of the virus is 
more predominant (CXCR4 co-receptor) 

 X4 emerges through mutations from R5 



HIV latency 
 Infected CD4+ T cells can become 

memory cells  
 the main obstacle against HIV cure 

 
 We model the apoptosis in the infected 

T cells: both active and dormant 



HIV Proteins 

HIV Proteins 



Simulation of apoptosis in infected cells, both latent and 
non-latent 



tBid signals the induction of the type II pathway 



 non-latent   post-latent 



Meaning 
 

 Administer the cocktail of drugs 
 Re-activate the memory T cells 
 Keep patient alive for 42 hours 

 Cytotoxicity 
 HIV virus would not be in the T cells 



Simulation of latent cells 
 These are the first results reported about the 

length of life of a latently infected cell that is 
re-activated 

 Due to the scarcity of the experiments on 
latent cells 
 

 Re-activated cells live about 6 hours less than 
the normally infected cells (42 vs 48 hours) 



 Future work for SB area  
 Implementation / simulation of cells 

 
 Stochastic approach for the STP simulations 
 improvement of current results 
 other (better) models 

 



3 FA: Cover Automata 
 DFA with a counter, for finite languages 
 Variation of Hopcroft’s algorithm exists 
 Still O(n log n) 
 We have still determinsm 
 We lose the uniquess of the minimal 

machine 
 In real life around 7% improvement 



 Hopcroft’s algorithm is the best known 
algorithm for minimization of (general) 
DFA 

 An upper bound on the runtime of the 
algorithm was proven in the original 
paper by Hopcroft, but no lower bound 
was given since 
 

3 FA: Hopcroft’s algorithm 



Hopcroft’s algorithm 
 Described in 1971 in 7 pages 

 
 Has time complexity of O (n log n) and 

space complexity of O(n) 
 

 Finds a partition according to the 
equivalance relation on states 



Hopcroft’s algorithm 
 Starts with the coarsest partiton on states (F, 

Q-F) and refines this partition according to 
the “splitting” of states in the partition 

 This splitting of states proceeds somehow in 
a backward manner: two states from the 
same partition that go with the same letter in 
different partitions are split 

 Continue this until no more splitting is 
possible 



Hopcroft’s algorithm 
1. P={F, Q-F} 
2. For all a in ∑ add (min(F, Q-F),a) to S 
3. While S≠ø do  
4.   get (C,a) from S 
5.   for each B in P that is split by (C,a) do 
6.     replace B in P by both B’ and B’’ 
7.     for all b in∑ do 
8.     if (B,b) in S then replace it by (B’,b) and (B’’, b) 
9.                    else add (min(B’,B’’),b) to S 



Implementation choices 
 There are three points of flexibility for 

implementation of the algorithm 
 In line 2: the strategy for S 
 In line 9: if |B’|=|B’’| which one is 

added to S 
 And in line 8: according to the 

implementation of S how is B’ and B’’ 
replacing B 



Results for DFA 
 In the worst case scenario (queue 

implementation) for unary languages 
with 2n states we have: 

 Final states=non final states= 2n-1  
 Final states preceeding final states: 2n-2 

 etc. 
 

  



 The worst possible case is reached 
by deBruijn words: 

 Every possible word  
of length 3 appears  
exactly once 

 
 Automaton for n=3 

 
 Solutie similara pentru DFCA 

 



Stack is better than queue 
 The absolute worst case run-time complexity for the 

Hopcroft's minimization algorithm for DFCA for unary 
languages is reached when the splitter list S in the 
algorithm is following a FIFO strategy and only for 
automata having a structure induced by de Bruijn 
words of size n.  

 In that setting the algorithm will pass through the 
queue S exactly n2n-1 states for the input automaton 
of size 2n. Thus for m states of the input automaton 
we have exactly m/2 log2m states passing through S. 

 (linear for stack, O(n log n) for queue) 
 



Other DFCA result (2005) 
 Incremental construction of DFCA (save 

space and time) 



Future work: cover automata  
 Experiments on different languages and 

different implementation strategies 
 Experiments on random languages 
 Study the case of “random” changes of the 

strategy between LIFO and FIFO 
 Union of two cover automata with different 

l-s 



4 Plan for future (ideas) 
 DFCA used for counting the number of 

nullomers in GenBank 
 DFCA for compression of genomes 
 Log-gain procedure developed by V. 

Manca verify the stability to noise  
 RECRUIT good PhD students 



Thank you !!! 
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