Networks of Splicing Processors

José M. Sempere
Research Group on Computation Models and Formal Languages
Departamento de Sistemas Informáticos y Computación Universitat Politècnica de València

Networks of Splicing Processors

1. DNA Recombination and Splicing.
2. Splicing over strings (Type I and II).
3. H schemes. Iterative and non-iterative language classes.
4. Extended H Systems.
5. Extended H Systems with permitting context
6. Splicing processors
7. (Accepting) NSPs
8. (A)NSPs are computationally complete
9. Complexity issues

DNA Recombination and Splicing

```
5' - CCCCCTCGACCCCC - 3'
3' - GGGGGAGCTGGGGG - 5'
5, - AAAAAGCGCAAAAA - 3, 
5' - TTTTTGCGCTTTTT - 3
3' - AAAAACGCGAAAAA - 5' Taql SciNI


Splicing over strings (Types I and II)
\[
\begin{aligned}
& \begin{array}{c|c|cc}
T & C & G & A \\
A & G & C & T
\end{array} \\
& \text { Taql } \\
& \begin{array}{l|llll}
G & C & G & C \\
C & G & C & G
\end{array} \\
& \text { SciNI } \\
& \begin{array}{l|l|ll}
G & C & G & C \\
C & G & C & G
\end{array} \\
& \text { Hhal }
\end{aligned}
\]

Patterns \(\frac{(\mathrm{T}, \mathrm{CG}, \mathrm{A})(\mathrm{C}, \mathrm{CG}, \mathrm{C})}{\text { Class I }} \frac{(\mathrm{G}, \mathrm{CG}, \mathrm{G})}{\text { Class II }}\)
\[
\begin{array}{ll}
w_{1}=w_{1} u_{1} x_{1} v_{1} w^{\prime \prime \prime}{ }_{1} & p_{1}=\left(u_{1}, x_{1}, v_{1}\right) \\
w_{2}=w_{2}^{\prime} u_{2} x_{2} v_{2} w_{2}^{\prime \prime} & p_{2}=\left(u_{2}, x_{2}, v_{2}\right)
\end{array}
\]

The splicing only occurs if \(p_{1}\) and \(p_{2}\) are of the same class and \(x_{1}=x_{2}\)
\[
\begin{aligned}
& z_{1}=w_{1} u_{1} u_{1} x_{1} v_{2} w^{\prime \prime \prime}{ }_{2}{ }_{2} \\
& z_{2}=w_{2}^{\prime} u_{2} x_{2} v_{1} w_{2 \prime \prime \prime}{ }_{2}
\end{aligned}
\]

\section*{Splicing over strings (Types I and II)}
\[
\begin{array}{lll}
w_{1}=w_{1} u_{1} x_{1} v_{1} w_{\prime \prime}^{\prime \prime} & p_{1}=\left(u_{1}, x_{1}, v_{1}\right) & z_{1}=w_{1}^{\prime} u_{1} x_{1} v_{2} w_{2}^{\prime \prime} \\
w_{2}=w_{2}^{\prime} u_{2} x_{2} v_{2} w_{2}^{\prime \prime} & p_{2}=\left(u_{2}, x_{2}, v_{2}\right) & z_{2}=w_{2}^{\prime} u_{2} x_{2} v_{1} w_{1}^{\prime \prime \prime}
\end{array}
\]

The patterns \(\left(p_{1}, p_{2}\right)\) can be denoted as \(\left(u_{1}, u_{2} ; u_{3}, u_{4}\right)\) or as the string \(u_{1} \# u_{2} \$ u_{3} u_{4}\).
Let \(\mathrm{r}=u_{1} \# u_{2} \$ u_{3} u_{4}\) be an splicing rule, then we can define the following operations

\section*{Type I splicing operation}
\[
\begin{array}{r}
(x, y) \vdash_{r} z \text { sii } x=x_{1} u_{1} u_{2} x_{2} \\
y=y_{1} u_{3} u_{4} y_{2} \\
z=x_{1} u_{1} u_{4} y_{2}
\end{array}
\]

\section*{Type II splicing operation}
\((x, y) \models_{r}(z, w)\) sii \(x=x_{1} u_{1} u_{2} x_{2}\),
\[
\begin{aligned}
& y=y_{1} u_{3} u_{4} y_{2} \\
& z=x_{1} u_{1} u_{4} y_{2} \\
& w=y_{1} u_{3} u_{2} x_{2}
\end{aligned}
\]

\section*{H schemes}
\(\sigma=(\mathrm{V}, \mathrm{R})\) where
V an alphabet
\(\mathrm{R} \subseteq \mathrm{V}^{*} \# \mathrm{~V}^{*} \$ \mathrm{~V}^{*} \# \mathrm{~V}^{*}\) a set of splicing rules

If \(R\) belongs to the family of languages \(L\) then \(\sigma\) is of type \(L\)
\(\forall \mathrm{L} \subseteq \mathrm{V}^{*}\)
\[
\begin{gathered}
\sigma_{1}(\mathrm{~L})=\left\{z \in \mathrm{~V}^{*}:(x, y) \vdash_{\mathrm{r}} z, x, y \in \mathrm{~L}, \mathrm{r} \in \mathrm{R}\right\} \\
\sigma_{1}(x, y)=\left\{z \in \mathrm{~V}^{*}:(x, y) \vdash_{\mathrm{r}} z, \mathrm{r} \in \mathrm{R}\right\} \\
\sigma_{1}(\mathrm{~L})=\bigcup_{x, y \in \mathrm{~L}} \sigma_{1}(x, y)
\end{gathered}
\]

\section*{Language classes denoted by the H schemes} (the noniterative case)
\[
\begin{gathered}
\sigma=(\mathrm{V}, \mathrm{R}) \\
\mathrm{S}_{1}\left(\mathrm{~L}_{1}, \mathrm{~L}_{2}\right)=\left\{\sigma_{1}(\mathrm{~L}): \mathrm{L} \in \mathrm{~L}_{1}, \mathrm{R} \in \mathrm{~L}_{2}\right\}
\end{gathered}
\]
\(L_{1}\) is closed under splicing of type \(L_{2}\) if \(S_{1}\left(L_{1}, L_{2}\right) \subseteq L_{1}\)

Lemma For all the families of languages \(L_{1}, L_{2}, L_{1}^{\prime}, L^{\prime}\) 'such that \(\mathrm{L}_{1} \subseteq \mathrm{~L}^{\prime}{ }_{1}\) and \(\mathrm{L}_{2} \subseteq \mathrm{~L}^{\prime}{ }_{2}\) the inclusion \(\mathrm{S}_{1}\left(\mathrm{~L}_{1}, \mathrm{~L}_{2}\right) \subseteq \mathrm{S}_{1}\left(\mathrm{~L}^{\prime}, \mathrm{L}^{\prime}{ }_{2}\right)\) holds.

Language classes denoted by the H systems (the noniterative case)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline\(L_{1}\) & FIN & REG & LIN & CF & CS & RE \\
\hline FIN & FIN & FIN & FIN & FIN & FIN & FIN \\
\hline REG & REG & REG & REG, LIN & REG, CF & REG, RE & REG, RE \\
\hline LIN & LIN, CF & LIN, CF & RE & RE & RE & RE \\
\hline CF & CF & CF & RE & RE & RE & RE \\
\hline CS & RE & RE & RE & RE & RE & RE \\
\hline RE & RE & RE & RE & RE & RE & RE \\
\hline
\end{tabular}
\[
S_{1}\left(L_{1}, L_{2}\right)
\]

Language classes denoted by the H schemes (the iterative case)
\[
\begin{gathered}
\sigma=(\mathrm{V}, \mathrm{R}) \quad \mathrm{L} \subseteq \mathrm{~V}^{*} \\
\sigma_{1}(\mathrm{~L})=\left\{z \in \mathrm{~V}^{*}:(x, y) \vdash_{\mathrm{r}} z, x, y \in \mathrm{~L}, \mathrm{r} \in \mathrm{R}\right\} \\
\sigma^{0}{ }_{1}(\mathrm{~L})=\mathrm{L} \\
\sigma^{i+1}{ }_{1}(\mathrm{~L})=\sigma_{1}^{i}(\mathrm{~L}) \cup \sigma_{1}\left(\sigma_{1}{ }_{1}(\mathrm{~L})\right), \quad i \geq 0 \\
\sigma^{*}{ }_{1}(\mathrm{~L})=\bigcup \sigma_{1}^{i}(\mathrm{~L}) \\
i \geq 0
\end{gathered}
\]
\[
H_{1}\left(L_{1}, L_{2}\right)=\left\{\sigma^{*}{ }_{1}(\mathrm{~L}):, L \in L_{1}, R \in L_{2}\right\}
\]

Language classes denoted by the H systems (the iterative case)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline\(L_{1}\) & FIN & REG & LIN & CF & CS & RE \\
\hline FIN & FIN, REG & FIN, RE & FIN, RE & FIN, RE & FIN, RE & FIN,RE \\
\hline REG & REG & REG, RE \\
\hline LIN & LIN, CF & LIN, RE \\
\hline CF & CF & CF, RE \\
\hline CS & CS, RE \\
\hline RE & RE & RE & RE & RE & RE & RE \\
\hline
\end{tabular}
\[
\mathrm{H}_{1}\left(\mathrm{~L}_{1}, \mathrm{~L}_{2}\right)
\]

\section*{Extended H Systems}
\(\sigma=(\mathrm{V}, \mathrm{R})\) is an H scheme \(\mathrm{L} \subseteq \mathrm{V}^{*}\) is a language
\(\gamma=(\mathrm{V}, \mathrm{L}, \mathrm{R})\) is a \(\underline{\mathrm{H} \text { system }}\)
\[
\mathrm{L}(\gamma)=\sigma^{*}{ }_{1}(\mathrm{~L})
\]
\(\gamma=(\mathrm{V}, \mathrm{T}, \mathrm{A}, \mathrm{R})\) is an extended H system
\(V\) is an alphabet
\(\mathrm{T} \subseteq \mathrm{V}\) is an alphabet of terminal symbols
\(\mathrm{A} \subseteq \mathrm{V}^{*}\) is a set of axioms
\(\mathrm{R} \subseteq \mathrm{V}^{*} \# \mathrm{~V}^{*} \$ \mathrm{~V}^{*} \# \mathrm{~V}^{*}\) is a set of splicing rules
\[
\mathrm{L}(\gamma)=\sigma^{*}{ }_{1}(\mathrm{~A}) \cap \mathrm{T}^{*}
\]
\[
E H_{1}\left(L_{1}, L_{2}\right)=\left\{L(\gamma): A \in L_{1}, R \in L_{2}\right\}
\]

Language classes denoted by the extended H systems
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \(L_{1} \quad L_{2}\) & FIN & REG & LIN & CF & CS & RE \\
\hline FIN & REG & RE & RE & RE & RE & RE \\
\hline REG & REG & RE & RE & RE & RE & RE \\
\hline LIN & LIN, CF & RE & RE & RE & RE & RE \\
\hline CF & CF & RE & RE & RE & RE & RE \\
\hline CS & RE & RE & RE & RE & RE & RE \\
\hline RE & RE & RE & RE & RE & RE & RE \\
\hline
\end{tabular}
\(E H_{1}\left(L_{1}, L_{2}\right)\)

\section*{Extended H systems with permitting contexts}
\(\gamma=(\mathrm{V}, \mathrm{T}, \mathrm{A}, \mathrm{R})\) is an extended H system
\(R\) is a finite set of 3 -tuples in the form
\[
\begin{array}{ll}
\mathrm{p}=\left(\mathrm{r} ; \mathrm{C}_{1}, \mathrm{C}_{2}\right) & \mathrm{r}=u_{1} \# u_{2} \$ u_{3} \# u_{4} \\
& \mathrm{C}_{1}, \mathrm{C}_{2} \subseteq \mathrm{~V}^{*} \text { (finite) }
\end{array}
\]
\((x, y) \models_{p}(z, w)\) iff \((x, y) \models_{r}(z, w)\) every element in \(\mathrm{C}_{1}\) appears in \(x\) every element in \(\mathrm{C}_{2}\) appears in \(y\)
\[
\mathrm{L}(\gamma)=\sigma^{\star}{ }_{2}(\mathrm{~A}) \cap \mathrm{T}^{*}
\]


\section*{Splicing processors}

Choudhary \& Krithivasan, 2007
A splicing processor over \(V\) is a 8 -tuple ( \(M, S, A, P I, F I, P O, F O, \beta\) ), where:
\(M\) is a set of splicing rules with permitting context
\(S\) is a finite set of strings over \(V\)
\(A\) is a finite set of axioms over \(V\)
\(\mathrm{PI}, \mathrm{FI} \subseteq \mathrm{V}\) are the input permitting/forbidding contexts of the processor
\(\mathrm{PO}, \mathrm{FO} \subseteq \mathrm{V}\) are the output permitting/forbidding contexts of the processor
(with \(\mathrm{PI} \cap \mathrm{Fl}=\varnothing\) and \(\mathrm{PO} \cap \mathrm{FO}=\varnothing\) )
\(\beta \in\{(1),(2)\}\) defines the input/output filter
We can define the following predicates for the filters
\[
\begin{aligned}
& r c_{(1)}(z P, F) \equiv[P \subseteq \operatorname{alph}(z)] \wedge[F \cap \operatorname{alph}(z)=\varnothing] \\
& r c_{(2)}(z P, F) \equiv[\operatorname{alph}(z) \cap P \neq \varnothing] \wedge[F \cap a l p h(z)=\varnothing]
\end{aligned}
\]

\section*{Splicing processors}

\section*{Manea, Martín-Vide \& Mitrana, 2005}

A splicing processor over \(V\) is a 6 -tuple ( \(S, A, P I, F I, P O, F O\) ), where:
\(S\) is a finite set of splicing rules over V
A is a finite set of auxiliary words over \(V\)
\(\mathrm{PI}, \mathrm{FI} \subseteq \mathrm{V}\) are the input permitting/forbidding contexts of the processor
\(\mathrm{PO}, \mathrm{FO} \subseteq \mathrm{V}\) are the output permitting/forbidding contexts of the processor (with \(\mathrm{PI} \cap \mathrm{FI}=\varnothing\) and \(\mathrm{PO} \cap \mathrm{FO}=\varnothing\) )

We can define the following predicates for the filters
\[
\begin{aligned}
& r c_{(1)}(z P, F) \equiv[P \subseteq \operatorname{alph}(z)] \wedge[F \cap a l p h(z)=\varnothing] \\
& r c_{(2)}(z P, F) \equiv[a / p h(z) \cap P \neq \varnothing] \wedge[F \cap a l p h(z)=\varnothing]
\end{aligned}
\]

\section*{Networks of Splicing Processors (NSPs)}

Choudhary \& Krithivasan, 2007
A NSP of size n is a tuple \(\left(V, N_{1}, N_{2}, \ldots, N_{n}, G\right)\), where:
V is an alphabet
\(\mathrm{N}_{\mathrm{i}}\) is the ith splicing processor
\(G\) is an undirected graph without loops (the underlying topology of the network)
- The configuration of the network consists of the strings at every processor (excluding the axioms for the splicing rule)
- The network evolves as in the Networks of Evolutionary Processors (NEPs) with splicing steps and communication steps
- There exists an output processor which collects the strings as the product of a computation sequence
- The network halts whenever no splicing operation can be carried out and no string can be communicated

\section*{Accepting Networks of Splicing Processors (ANSPs)}

Manea, Martín-Vide \& Mitrana, 2005
An ANSP is a 9-tuple ( \(\left.V, U,<,>, G, N, \alpha, x_{,}, x_{O}\right)\), where:
\(\mathrm{V}, \mathrm{U}\) are the input and network alphabets
<,> \(\in\) UIV are special symbols
\(\mathrm{G}=\left(\mathrm{X}_{\mathrm{G}}, \mathrm{E}_{\mathrm{G}}\right)\) is an undirected graph without loops (the underlying topology of the network)
\(\mathrm{N}: \mathrm{X}_{\mathrm{G}} \rightarrow \mathrm{SP}_{\mathrm{U}}\) associates to each node in the graph a splicing processor over U \(\alpha: X_{G} \rightarrow\{(1),(2)\}\) defines the type of filter at every processor
\(x_{1}, x_{O} \in X_{G}\) are the input and output processors
- The configuration of the network consists of the strings at every processor
- The network evolves as in the Networks of Evolutionary Processors (NEPs) with splicing steps and communication steps
- The input processor initially holds the string to be analyzed
- The network halts whenever: (1) a string enters into the output processor (accepting computation) or, (2) There exists two identical configurations obtained either in consecutive splicing steps or in consecutive communication steps (not an accepting computation)

\section*{Choudhary \& Krithivasan, 2007}

Theorem. Each recursively enumerable language can be generated by a complete NSP of size two where the splicing rules are of type regular.


Simulate a type 0 Chomsky grammar which works in the same way as the \(\mathrm{EH}_{2}(\) FIN, pFIN \()\) system

\section*{(A)NSPs are computationally complete}

\author{
Manea, Martín-Vide \& Mitrana, 2005
}

Theorem. For any Turing machine M there exists an ANSP that accepts exactly the same language as M does.

Simulate the movements of a Turing machine with a number of processors that linearly depends on the size of the alphabet and states of the Turing machine

\section*{(A)NSPs are computationally complete}

Manea, Martín-Vide \& Mitrana, 2005
Theorem. For any ANSP \(\Gamma\), accepting the language \(L\), there exists a
Turing machine \(M\) that accepts the same language \(L\).


The nondeterministic Turing machine associates every state to a node in the ANSP. The splicing rules and evolution strings are nondeterministically chosen. Whenever the Turing machine enters into the state which is associated to the output node, then it halts and accepts the input word.

\section*{Complexity issues}

Manea, Martín-Vide \& Mitrana, 2007
Introducing time complexity measures
We consider an ANSP \(\Gamma\) with the input alphabet V that halts on every input. The time complexity of the computation
\[
\mathrm{C}_{0}(\mathrm{x}), \mathrm{C}_{1}(\mathrm{x}), \mathrm{C}_{2}(\mathrm{x}), \ldots, \mathrm{C}_{\mathrm{m}}(\mathrm{x})
\]
of \(\Gamma\) on \(x\) is denoted by \(\operatorname{Time}_{\Gamma}(x)\) and equals \(m\).
The time complexity of \(\Gamma\) is the partial function from \(N\) to \(N\),
\[
\operatorname{Time}_{\Gamma}(\mathrm{n})=\max \left\{\operatorname{Time}_{\Gamma}(\mathbf{x})| | \mathbf{x} \mid=\mathrm{n}\right\} .
\]

For a function \(\mathrm{f}: \mathrm{N} \rightarrow \mathrm{N}\) we define
\(\operatorname{Time}_{\text {ANSP }}(\mathrm{f}(\mathrm{n}))=\left\{\mathrm{L} \mid \mathrm{L}=\mathrm{L}(\Gamma)\right.\) for an ANSP \(\Gamma\) with \(\operatorname{Time}_{\Gamma}(\mathrm{n}) \leq \mathrm{f}(\mathrm{n})\) for some \(\left.n \geq n_{0}\right\}\).
\[
\text { PTime }_{A N S P}=\bigcup_{k \geq 0} \operatorname{Time}_{A N S P}\left(n^{k}\right)
\]

Complexity results

\title{
Proposition. If \(L \in N P\) then \(L \in\) PTime \(_{\text {ANSP }}\)
}

\section*{Proposition. If \(L \in\) PTime \(_{\text {ANSP }}\) then \(L \in N P\).}
\[
\text { PTime }_{\text {ANSP }}=\mathrm{NP}
\]

\section*{Complexity issues}

Manea, Martín-Vide \& Mitrana, 2007
Introducing space complexity measures
The length complexity of the computation
\[
\mathrm{C}_{0}(\mathrm{x}), \mathrm{C}_{1}(\mathrm{x}), \mathrm{C}_{2}(\mathrm{x}), \ldots, \mathrm{C}_{\mathrm{m}}(\mathrm{x})
\]
of \(\Gamma\) on \(x\) is denoted by Length \({ }_{\Gamma}(x)\) and equals to
\[
\max \left\{|w|: w \in C_{i}(x): 1 \leq i \leq m\right\} .
\]

The length complexity of \(\Gamma\) is the partial function from \(N\) to \(N\),
\[
\operatorname{Length}_{\Gamma}(\mathrm{n})=\max \left\{\text { Length }_{\Gamma}(\mathbf{x})| | \mathbf{x} \mid=\mathrm{n}\right\} .
\]

For a function \(\mathrm{f}: \mathrm{N} \rightarrow \mathrm{N}\) we define
Length \(_{\text {ANSP }}(\mathrm{f}(\mathrm{n}))=\left\{\mathrm{L} \mid \mathrm{L}=\mathrm{L}(\Gamma)\right.\) for an ANSP \(\Gamma\) with Length \({ }_{\Gamma}(\mathrm{n}) \leq \mathrm{f}(\mathrm{n})\) for some \(\left.\mathbf{n} \geq \mathbf{n}_{0}\right\}\).
\[
P \text { Length }_{A N S P}=\bigcup_{k \geq 0} \operatorname{Length}_{A N S P}\left(n^{k}\right)
\]

Complexity results

\title{
Proposition. If \(L \in\) PSPACE then \(L \in\) PLength \(_{\text {ANSP }}\)
}

Proposition. If \(L \in\) PLength \(_{\text {ANSP }}\) then \(L \in\) PSPACE.


PLength \(_{\text {ANSP }}=\) PSPACE```

