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Networks of Splicing Processors

1. DNA Recombination and Splicing.

2. Splicing over strings (Type I and II).

3. H schemes. Iterative and non-iterative language classes.

4. Extended H Systems.

5. Extended H Systems with permitting context

6. Splicing processors

7. (Accepting) NSPs

8. (A)NSPs are computationally complete

9. Complexity issues



DNA Recombination and Splicing

5’ – CCCCCTCGACCCCC – 3’

3’ – GGGGGAGCTGGGGG – 5’

5’ – AAAAAGCGCAAAAA – 3’

3’ – TTTTTCGCGTTTTT – 5’

5’ – TTTTTGCGCTTTTT – 3’

3’ – AAAAACGCGAAAAA – 5’

double strands

T C G A

A G C T

TaqI

G C G C

C G C G

SciNI

G C G C

C G C G

HhaI

restriction enzimes (endonuclease)

5’ – CCCCCT   CGACCCCC – 3’

3’ – GGGGGAGC   TGGGGG – 5’

5’ – AAAAAG    CGCAAAAA – 3’

3’ – TTTTTCGC    GTTTTT – 5’

5’ – TTTTTGCG    CTTTTT – 3’

3’ – AAAAAC    GCGAAAAA – 5’

5’ – CCCCCTCGCAAAAA – 3’

3’ – GGGGGAGCGTTTTT – 5’

5’ – AAAAAGCGACCCCC – 3’

3’ – TTTTTCGCTGGGGG – 5’ligases



Splicing over strings (Types I and II)

T C G A

A G C T

TaqI

G C G C

C G C G

SciNI

G C G C

C G C G

HhaI

Patterns (T, CG, A)    (C,CG,C)        (G,CG,G)
Class I Class II

w1 = w’1 u1 x1 v1 w”1

w2 = w’2 u2 x2 v2 w”2

p1 = (u1 , x1 , v1)
p2 = (u2 , x2 , v2)

The splicing only occurs if  p1 and p2 are of the same class and x1=x2

z1 = w’1 u1 x1 v2 w”2

z2 = w’2 u2 x2 v1 w”1



Splicing over strings (Types I and II)

w1 = w’1 u1 x1 v1 w”1

w2 = w’2 u2 x2 v2 w”2

p1 = (u1 , x1 , v1)
p2 = (u2 , x2 , v2)

The patterns (p1, p2) can be denoted as (u1, u2; u3,u4) or as the string u1#u2$u3u4.

z1 = w’1 u1 x1 v2 w”2

z2 = w’2 u2 x2 v1 w”1

Type I splicing operation

(x,y) ├─r z sii x=x1u1u2x2, 
y=y1u3u4y2, 
z=x1u1u4y2, 

Type II splicing operation

(x,y) ╞═r (z,w) sii x=x1u1u2x2, 
y=y1u3u4y2, 
z=x1u1u4y2, 
w= y1u3u2x2

Let r=u1#u2$u3u4 be an splicing rule, then we can define the following operations



H schemes

σ = (V, R) where

V an alphabet
R ⊆ V*#V*$V*#V*  a set of splicing rules

If R belongs to the family of languages L then σ is of type L

∀ L ⊆ V*

σ1(L) = { z ∈ V* : (x,y)├─r z,  x,y ∈L, r ∈ R }

σ1(x,y) = {  z ∈ V* : (x,y)├─r z, r ∈ R }

σ1(L) = ∪ σ1(x,y) 
x,y ∈L



Language classes denoted by the H schemes
(the noniterative case)

σ = (V, R)

S1(L1,L2) = {  σσσσ1(L) : L ∈∈∈∈ L1, R ∈∈∈∈ L2 }

L1 is closed under splicing of type L2 if S1(L1 , L2) ⊆⊆⊆⊆ L1

Lemma For all the families of languages L1 , L2 , L’1 , L’2 such that
L1 ⊆⊆⊆⊆ L’1 and L2 ⊆⊆⊆⊆ L’2 the inclusion S1(L1 , L2) ⊆⊆⊆⊆ S1(L’1 , L’2) holds. 



FIN REG LIN CF CS RE

FIN FIN FIN FIN FIN FIN FIN

REG REG REG REG, LIN REG, CF REG, RE REG, RE

LIN LIN, CF LIN, CF RE RE RE RE

CF CF CF RE RE RE RE

CS RE RE RE RE RE RE

RE RE RE RE RE RE RE

S1(L1,L2)

L
1

L
2

Language classes denoted by the H systems
(the noniterative case)



σ = (V, R)          L ⊆ V*

σ1(L) = {  z ∈ V* : (x,y)├─r z,  x,y ∈L, r ∈ R }

σ0
1(L) = L

σi+1
1(L) = σi

1(L) ∪ σ1(σ
i
1(L)),   i ≥ 0

σ*1(L) = ∪ σi
1(L)

i ≥ 0

H1(L1,L2) = {  σ*1(L) : ,  L ∈ L1, R ∈ L2 }

Language classes denoted by the H schemes
(the iterative case)



FIN REG LIN CF CS RE

FIN FIN, REG FIN, RE FIN, RE FIN, RE FIN, RE FIN,RE

REG REG REG, RE REG, RE REG, RE REG, RE REG, RE

LIN LIN, CF LIN, RE LIN, RE LIN, RE LIN, RE LIN, RE

CF CF CF, RE CF, RE CF, RE CF, RE CF, RE

CS CS, RE CS, RE CS, RE CS, RE CS, RE CS, RE

RE RE RE RE RE RE RE

H1(L1,L2)

L
1

L
2

Language classes denoted by the H systems
(the iterative case)



Extended H Systems

σ = (V, R) is an H scheme L ⊆ V* is a language

L(γ) = σ*1(L)

γ = (V, L, R) is a H system

γ = (V, T, A, R) is an extended H system

V is an alphabet
T ⊆ V is an alphabet of terminal symbols
A ⊆ V* is a set of axioms
R ⊆ V*#V*$V*#V* is a set of splicing rules

L(γ) = σ*1(A) ∩ T*

EH1(L1,L2) = {  L(γ) : A ∈ L1, R ∈ L2 }



FIN REG LIN CF CS RE

FIN REG RE RE RE RE RE

REG REG RE RE RE RE RE

LIN LIN, CF RE RE RE RE RE

CF CF RE RE RE RE RE

CS RE RE RE RE RE RE

RE RE RE RE RE RE RE

EH1(L1,L2)

L
1

L
2

Language classes denoted by the extended H systems



Extended H systems with permitting contexts

γ = (V, T, A, R) is  an extended H system

R is a finite set of 3-tuples in the form
p = (r; C1, C2)   r = u1#u2$u3#u4

C1, C2 ⊆ V* (finite)

(x,y) ╞═p (z,w) iff (x,y) ╞═r (z,w) 
every element in C1 appears in x
every element in C2 appears in y

L(γ) = σ*2(A) ∩ T*

Lemma: RE ⊆ EH2(FIN,pFIN)

set of axioms A

sets of permitting contexts  C1 and C2



Splicing processors

Choudhary & Krithivasan, 2007

A splicing processor over V is a 8-tuple (M,S,A,PI,FI,PO,FO,β),where:

M is a set of splicing rules with permitting context
S is a finite set of strings over V
A is a finite set of axioms over V
PI,FI     V are the input permitting/forbidding contexts of the processor
PO,FO    V are the output permitting/forbidding contexts of the processor
(with PI    FI=      and PO     FO=   )
β {(1),(2)} defines the input/output filter

We can define the following predicates for the filters

⊆

⊆

∩ ∩∅ ∅

∈

rc
(1)

(z;P, F) ≡ [P ⊆ alph(z)]∧[F ∩alph(z) = ∅]

rc
(2)

(z;P, F) ≡ [alph(z)∩P ≠ ∅]∧[F ∩alph(z) = ∅]



Splicing processors

Manea, Martín-Vide & Mitrana, 2005

A splicing processor over V is a 6-tuple (S,A,PI,FI,PO,FO),where:

S is a finite set of splicing rules over V
A is a finite set of auxiliary words over V
PI,FI     V are the input permitting/forbidding contexts of the processor
PO,FO    V are the output permitting/forbidding contexts of the processor
(with PI    FI=      and PO     FO=   )

We can define the following predicates for the filters

⊆

⊆

∩ ∩∅ ∅

rc
(1)

(z;P, F) ≡ [P ⊆ alph(z)]∧[F ∩alph(z) = ∅]

rc
(2)

(z;P, F) ≡ [alph(z)∩P ≠ ∅]∧[F ∩alph(z) = ∅]



Networks of Splicing Processors (NSPs)

Choudhary & Krithivasan, 2007

A NSP of size n is a tuple (V,N1,N2, …, Nn,G),where:

V is an alphabet
Ni is the ith splicing processor
G is an undirected graph without loops (the underlying topology of the 
network)

• The configuration of the network consists of the strings at every processor (excluding the
axioms for the splicing rule)

• The network evolves as in the Networks of Evolutionary Processors (NEPs) with splicing
steps and communication steps

• There exists an output processor which collects the strings as the product of a computation
sequence

• The network halts whenever no splicing operation can be carried out and no string can be 
communicated



Accepting Networks of Splicing Processors (ANSPs)

Manea, Martín-Vide & Mitrana, 2005

An ANSP is a 9-tuple (V,U,<,>,G,N,α,xI,xO),where:

V,U are the input and network alphabets
<,>      U\V are  special symbols
G=(XG,EG) is an undirected graph without loops (the underlying topology of the
network)
N: XG � SPU associates to each node in the graph a splicing processor over U
α: XG � {(1),(2)} defines the type of filter at every processor
xI,xO XG are the input and output processors

∈

∈

• The configuration of the network consists of the strings at every processor

• The network evolves as in the Networks of Evolutionary Processors (NEPs) with splicing
steps and communication steps

• The input processor initially holds the string to be analyzed

• The network halts whenever: (1) a string enters into the output processor (accepting
computation) or, (2) There exists two identical configurations obtained either in consecutive
splicing steps or in consecutive communication steps (not an accepting computation)



(A)NSPs are computationally complete

Choudhary & Krithivasan, 2007

Theorem. Each recursively enumerable language can be generated by a 
complete NSP of size two where the splicing rules are of type regular.

Simulate a type 0  Chomsky grammar which works in the same
way as the EH2(FIN,pFIN) system



(A)NSPs are computationally complete

Simulate the movements of a Turing machine with a number of 
processors that linearly depends on the size of the alphabet 
and states of the Turing machine

Manea, Martín-Vide & Mitrana, 2005

Theorem. For any Turing machine M there exists an ANSP that accepts
exactly the same language as M does.



(A)NSPs are computationally complete

The nondeterministic Turing machine associates every state to
a node in the ANSP. The splicing rules and evolution strings are
nondeterministically chosen. Whenever the Turing machine
enters into the state which is associated to the output node,
then it halts and accepts the input word.

Manea, Martín-Vide & Mitrana, 2005

Theorem. For any ANSP  ΓΓΓΓ, accepting the language L, there exists a
Turing machine M that accepts the same language L.



Complexity issues

Manea, Martín-Vide & Mitrana, 2007

Introducing  time complexity measures

We consider an ANSP Γ with the input alphabet V that halts on 
every input. The time complexity of the computation 

C0(x), C1(x), C2(x) , . . . ,Cm(x)
of Γ on x is denoted by TimeΓΓΓΓ(x) and equals m.

For a function f : N � N we define

TimeANSP( f (n)) = {L | L = L(ΓΓΓΓ) for an ANSP Γ Γ Γ Γ with TimeΓΓΓΓ (n) ≤≤≤≤ f (n) for 
some n  ≥≥≥≥ n0}.

The time complexity of  Γ is the partial function from N to N,

TimeΓΓΓΓ (n) = max{Time ΓΓΓΓ(x) | |x| = n}.

U
0

)(
≥

=
k

k

ANSPANSP nTimePTime



Complexity issues

Manea, Martín-Vide & Mitrana, 2007

Complexity results

Proposition. If L ∈∈∈∈ NP then L ∈∈∈∈ PTimeANSP.

Proposition. If L ∈∈∈∈ PTimeANSP then L ∈∈∈∈ NP.

PTimeANSP = NP



Complexity issues

Manea, Martín-Vide & Mitrana, 2007

Introducing  space complexity measures

The length complexity of the computation 
C0(x), C1(x), C2(x) , . . . ,Cm(x)

of Γ on x is denoted by LengthΓΓΓΓ(x) and equals  to  
max{ |w| : w ∈ Ci(x) : 1 ≤ i ≤ m}.

For a function f : N � N we define

LengthANSP( f (n)) = {L | L = L(ΓΓΓΓ) for an ANSP Γ Γ Γ Γ with LengthΓΓΓΓ (n) ≤≤≤≤ f (n) 
for some n  ≥≥≥≥ n0}.

The length complexity of  Γ is the partial function from N to N,

LengthΓΓΓΓ (n) = max{Length ΓΓΓΓ(x) | |x| = n}.

U
0

)(
≥

=
k

k

ANSPANSP nLengthPLength



Complexity issues

Manea, Martín-Vide & Mitrana, 2007

Complexity results

Proposition. If L ∈∈∈∈ PSPACE then L ∈∈∈∈ PLengthANSP.

Proposition. If L ∈∈∈∈ PLengthANSP then L ∈∈∈∈ PSPACE.

PLengthANSP = PSPACE


