
Networks of Genetic Processors

José M. Sempere

Research Group on Computation Models and Formal Languages

Departmento de Sistemas Informáticos y Computación

Universitat Politècnica de València



Networks of Genetic Processors

1. Previous Models: NEPs and NSPs

2. Accepting NGPs

3. NGPs are computationally complete

4. Some considerations on computational and description complexity

5. Other variants of NGPs: Generators and Optimizers

6. Parallel Genetic Algorithms and NGPs

7. Solving the Optimization Traveling Salesman Problem

8. Work in progress: Applying NGPs to solve multialignment in 
DNA/protein sequences



Networks of Genetic Processors

Some bioinspired operators over strings and languages

Insertion Insert a symbol into a string aaaaa � aabaaa

Deletion Delete a symbol from a string aabaaa � aaaaa

Substitution (mutation)  Substitute a symbol into a string aaaaa � aabaa

Splicing Splicing rules  r=(u1#u2$v1#v2) r=(a#a$b#b) (abcdaa,bbabcd) � (abcdababcd,ba)

Crossover Full massive splicing with empty context aa bb � λ, bb, abb, aabb, ab, aab, …

Hairpin completion Hairpin completion from folded strings

Superposition Complementarity completion from double stranded strings

loop and double loop recombination DNA recombination based on gene assembly

inversion, duplication and transposition DNA fragments modification (operations on substrings)

… etc, etc.

><



Networks of Genetic Processors

A finite set of processors that apply operations over strings which have been inspired by

biomolecular functions and operations in the nature. The processors work with a multiset of

strings.

A connection topology between processors in the form of a network.

A set of (input/output) filters which can be attached to the processors or to the connections.

The ingredients to define a Network of Bioinspired Processors

permitted

forbidden

input output

a → b

aaa

bbab



Networks of Genetic Processors

Accepting Networks of Evolutionary Processors (I)

An evolutionary processor over V is a 5-tuple (M,PI,FI,PO,FO),where:

Either M    SubV or M     DelV or M    InsV

The set M represents the set of evolutionary rules of the processor. 

PI,FI     V are the input permitting/forbidding contexts of the processor

PO,FO    V are the output permitting/forbidding contexts of the processor

(with PI    FI=      and PO     FO=   )

We can define the following predicated for the filters

⊆ ⊆ ⊆

⊆

⊆

∩ ∅ ∩ ∅

rcs(z;P, F) ≡ [P ⊆ alph(z)]∧[F ∩alph(z) = ∅]

])([])([),;( ∅=∩∧∅≠∩≡ zalphFPzalphFPzrcw



Networks of Genetic Processors

Accepting Networks of Evolutionary Processors (II)

where

V and U are the input and network alphabets

G=(XG,EG) is an undirected graph without loops

N: XG � EPU associates an evolutionary processor to every node in G

α: XG � {l,r,*} associates an action mode to every node (Hybrid networks)

β: XG � {s,w}  associates a filter predicate to every node

xI,xO are the input and output nodes

Γ = (V,U,G, N,α, β, xI , xO)



Networks of Genetic Processors

Accepting Networks of Evolutionary Processors (III)

Γ = (V,U,G, N,α, β, xI , xO)

How does the network work ?

(I) Evolutionary steps

Ci ⇒⇒⇒⇒ Ci+1

• Every rule that can be applied is massively applied

• No competition between rules. All the rules are applied by using different copies

(II) Communication steps

Ci aaaa Ci+1

• Every processor sends all the filtered strings to its neighbours

• Every processor receives and stores filtered strings

• Strings that are sent but not received are lost

(III) Network at work

C0 ⇒⇒⇒⇒ C1 aaaa C2 ⇒⇒⇒⇒ C3 aaaa C4 ...



Networks of Genetic Processors

Accepting Networks of Evolutionary Processors (IV)

Γ = (V,U,G, N,α, β, xI , xO)

Accepted language

1. There exists a configuration in which the set of words existing in the output node x
O

is 

non-empty. (halting  and accepting computation)

2. There exist two consecutive identical configurations. (halting and rejection computation)

3. It works forever.

L(Γ)={w ∈ V* : the computation of Γ on w is an accepting one}.



Networks of Genetic Processors

Accepting Networks of Splicing Processors

Γ = (V,U,G, N,α, xI , xO)

An splicing processor over V is a 5-tuple (S,A,PI,FI,PO,FO),where:

S is a finite set of splicing rules

A is a finite set of auxiliary words

The rest of elements are identical to the evolutionary case

σ R(L) = {z, w ∈ V* : (∃u,v ∈ L, r ∈ R)[(u,v) a r (z, w)]}

(x, y) a r (w, z)Let r=u1#u2$v1#v2 an splicing rule then iff x=x1u1u2x2, 

y=y1v1v2y2, w=x1u1v2y2 and z=y1v1u2x2

Splicing steps C '(x) = σ Sx
(C(x)∪ Ax )

SAME ACCEPTANCE CRITERION AS IN THE EVOLUTIONARY CASE



Networks of Genetic Processors

From ANEPs and ANSPs to Accepting Networks of Genetic Processors (ANGPs) 

Substitute evolutionary operations or splicing rules by

(a) Mutation operations

baaaa

abaaa

aaaaa aabaa

aaaba

aaaab

(b) Crossover between strings

x y = { x1y2, y1x2 : x=x1x2, y = y1y2 }

a→ b

><

cd cd cd

ab cd,ab d,cab λ,cdab

ab acd, b ad,cb λ,cdb

ab abcd, λ abd,c ab,cd



Networks of Genetic Processors

From ANEPs and ANSPs to Accepting Networks of Genetic Processors (ANGPs) 

Some important remarks:

(1) NEPs with only substitution (mutation) processors are not computationally

complete

(2) NSPs with empty contexts (crossover) are not computationally complete

Combine mutation and crossover to …

(1) achieve computation completeness

(2) Connect Networks of Bio-Inspired Processors with Genetic Algorithms



Networks of Genetic Processors

Accepting Networks of Genetic Processors (I)

A genetic processor over V is a 5-tuple (MR,A,PI,FI,PO,FO,α,β),where:

• MR is a finite set of mutation rules over V (a � b)

• A is a multiset of strings over V with finite support and an arbitrary large

number of copies of every string

• PI,FI    V* are finite sets of input permitting/forbidding contexts

• PO,FO    V* are finite sets of output permitting/forbidding contexts

• α     {(1),(2)} defines the function mode such that

(1) means only mutation operations

(2) means crossover operations (MR =    )

• β {(1),(2)} defines the filter predicates

(1)

(2)

⊆

⊆

∈

∅

rcs(z;P, F) ≡ [P ⊆ seg(z)]∧[F ∩seg(z) = ∅]
])([])([),;( ∅=∩∧∅≠∩≡ zsegFPzsegFPzrcw

∈



Networks of Genetic Processors

Accepting Networks of Genetic Processors (II)

ANGP of size n is a tuple

where V is an alphabet

G=(XG,EG) is an undirected graph without loops

Ni (1  ≤ i ≤ n) is a genetic processor over V

Ν: XG � {N1,N2,…,Nn} associates a genetic processor to every node in 

the graph

Γ = (V, N1, N2,..., Nn,G, N)

How does the network work ?

(I) Genetic steps

Ci ⇒⇒⇒⇒ Ci+1

• Every rule that can be applied is massively applied

• No competition between rules. All the rules are applied by

using different copies

(II) Communication steps

Ci aaaa Ci+1

• Every processor sends all the filtered strings to its neighbours

• Every processor receives and stores filtered strings

• Strings that are sent but not received are lost

(III) Network at work C0 ⇒⇒⇒⇒ C1 aaaa C2 ⇒⇒⇒⇒ C3 aaaa C4 ...

SAME ACCEPTANCE CRITERION AS IN THE EVOLUTIONARY CASE



Networks of Genetic Processors

Theorem: ANGPs are computationally complete

M = (Σ, Γ,Q,δ,q0, B,Qf )

From deterministic Turing machines              ….  to ANGPs

αqaβinstantaneous description encoded instantaneous description qα$aβF

movement to the right δ(q,a)=(p,b,R) dedicated processor NqaR

movement to the right δ(q,a)=(p,b,L) a couple of dedicated processors for every c

NqacL1 NqacL2

visit to a new rightmost cell a couple of dedicated processors

NB NB2

q → p

$ → b'

a→ $

q → p

$ → c

a → b'

c→ $

crossover with #BF restores #BF

strong PI = {q,$a}

strong PI = {q,$a}

αqB

qα$F >< #BFqα$BF ∈

strong PI = {p,ccb’}

R= (V, Nc, N1,..., Nn, Nout, K̂, f )



Networks of Genetic Processors

Theorem: ANGPs are computationally complete

Γ = (V, N1, N2,..., Nn,G, N)

input node output node

fully connected subgraph

The network topology

q

in

N q

out

N

crossover

{w, q0 $, F}

q0 $wF

Nout = (∅,∅,∅,∅,∅,∅, (2), (1))

K̂



Networks of Genetic Processors

Theorem: ANGPs are computationally complete

M = (Σ, Γ,Q,δ,q0, B,Qf )

A similar simulation for non-deterministic Turing machines 

αqaβinstantaneous description encoded instantaneous description qα$aβF

movement to the right

(p,b,R) δ(q,a)

dedicated processor NqapbR

movement to the right a couple of dedicated processors for every c

NqapbcL1 NqapbcL2

q → p

$ → b'

a→ $

q → p

$ → c

a → b'

c→ $

strong PI = {q,$a}

strong PI = {q,$a}

strong PI = {p,ccb’}

R= (V, Nc, N1,..., Nn, Nout, K̂, f )

∈

(p,b,L) δ(q,a)∈



Networks of Genetic Processors

Theorem: NP     PTimeANGP

Looking to the computational complexity

Let us consider an ANGP R and the language L accepted by R, then the time

complexity of the accepting computation of R if x is given as an input string is

denoted by TimeR(x) and it is defined as the number of steps (both communication

and evolutionary ones) such that the network R halts on x in an acceptance mode.

⊂

TimeR(n) = max{TimeR(x) : x ∈ L(R), x = n}

TimeANGP(f)={L: There exists an ANGP, R, and a natural number n0 such that

L=L(R) and for all n ≥ n0, (TimeR(n) ≤ f(n))}

TimeANGP(poly) ≡ PTimeANGP

Open Problem: PTimeANGP ?⊂



Networks of Genetic Processors

Other variants of Networks of Genetic Processors

Generating Networks of Genetic Processors (GNGPs)

No input processor

The output processor collects the generating language

The halting criterium is the repetition of two consecutives configuration

Optimizing Networks of Genetic Processors (ONGPs)

The input processor stores the instance of the problem P to be optimized according to f

The output processor collects the solution S such that, at anytime t,

No explicit halting criteria

The processor filters can be substituted by integer functions and threshold values

Theorem: Let L be  a recursively enumerable language generated by a grammar

G in Kuroda’s Normal Form. Then, there exists a GNGP R such that

(1) R has 16 genetic processors

(2) R generates L

S= argmax/ min( f , t) : (∀ti ≤ t)( f (Sti
) ≤ / ≥ f (S))



Networks of Genetic Processors

From Networks of Genetic Processors to Parallel Genetic Algorithms

The main components of a Genetic Algorithm (or Evolution Program) are:

• A genetic representation for potential solutions to the problem

• A way to create an initial population of potential solutions

• An evaluation function that plays the role of the environment, rating solutions in 

terms of their ”fitness”

• Genetic operators that alter the composition of the potential solutions

• Values for various parameters that the genetic algorithm uses(population size, 

probabilities of applying genetic operators,etc.)



Networks of Genetic Processors

From Networks of Genetic Processors to Parallel Genetic Algorithms

The main ingredients to propose Parallel and Distributed Genetic Algorithm

The distribution of the individuals in different populations (master-slave, multiple

populations or islands, fine-grained populations or hierarchical and hybrid populations)

and the neighborhood topology (rings, m,n-complete, ladders, grids, etc.)

The synchronicity of the populations evolution and communication.

The migration phenomena: The migration rates (the percentage of individuals that

migrate from one population to a different one),the migration selection (the selections

of the individuals that migrate) and the migration frequency.

distribution

synchronicity

migration

migration



Networks of Genetic Processors

From Networks of Genetic Processors to Parallel Genetic Algorithms

From (Parallel) Genetic Algorithm as optimizers to acceptors

Acceptance Criterion I

Let w be an input string. We will say that a PGA accepts w if, after a finite number of iterations

(operator applications, fitness selection and individuals migration), w appears in a predefined

survival population.

Acceptance Criterion II

Let w be an input string. We will say that a PGA accepts w if, after a finite number of iterations

(operator applications, fitness selection and individuals migration), a distinguished individual

xyes appears in a predefined survival population. We say that the PGA rejects the input string

if, after a finite number of iterations (operator applications, fitness selection and individuals

migration), a distinguished individual xnot appears in a predefined survival population or the

PGA never finishes.

Theorem: Let D be a decision problem and LD its acceptance language. D can be

solved by a Parallel Genetic Algorithm with acceptance criterion I iff it can be

solved with acceptance criterion II.



Networks of Genetic Processors

From Networks of Genetic Processors to Parallel Genetic Algorithms

Theorem: Parallel Genetic Algorithms with multiple-populations, synchronicity

and full migration phenomena are computationally complete.

Open Problem I  Is full migration phenomena really needed ?

Open Problem II What is the role of crossover ?



Networks of Genetic Processors

Solving the Optimization Traveling Salesman Problem (I)

The Problem: There are n cities and connections between them. We have to find

a path that starts and begins at a given city, visits any city with a minimal distance

100 15020

130

73

140

20

33

27

43 45 73

38

G=(N,A)

C = argmin( A[Ci,Ci+1]+ A[Cn,C1])
i=1

n−1

∑Find C={1,2,…,n} such that



Networks of Genetic Processors

Solving the Optimization Traveling Salesman Problem (II)

• The strings in the processors are the secuences of nodes in a path

• The filters at the genetic processors are replaced by fitness functions (the sum

of the distances in the path) and selection of the best

• The experiments replicate “Solving Travaling Saleman Problem by Ant Colony

Optimization Algorithm with Association Rule”, G. Shang, Z. Lei, Z. Fengting, Z.

Chunxian. Third International Conference on Natural Computation (ICNC

2007)

• 30 cities defined through their coordinates

Maximum Population at any processor 10 average best worst

Genetic algotihms 852,99 675,57 982,83

Complete NGP with 7 processors 550,07 495,66 624,01

Linear NGP with 16 processors 528,52 485,71 601,6

Star NGP with 10 processors 512,18 484,25 545,11

Circular NGP with 13 processors 549,79 521,13 599,56



Networks of Genetic Processors

Solving the Optimization Traveling Salesman Problem (III)

Maximum Population at any processor 20 average best worst

Genetic algotihms 676,25 625,8 732,72

Linear NGP with 13 processors 502,35 428,28 553,18

Linear NGP with 16 processors 482,4 453,26 519,58

Linear NGP with 20 processors 503,03 447,66 576,3

Complete NGP with 20 processors 502,46 442,51 567,4

Linear NGP with 20 processors ( + one random

generator every 3 processors)

491,07 436,95 541,59

Maximum Population at any processor 30 average best worst

Linear NGP with 20 processors 499,71 423,25 539,25

Complete NGP with 20 processors 496,01 457,65 540,99



Networks of Genetic Processors

Work in progress: Applying NGPs to solve multialignment in DNA/protein sequences

PLVSS---PLRGEAGVLPFQQEEYEKVKRGIVEQCCHNTCSLYQLENYCN

ALVSG---PQDNELDGMQLQPQEYQKMKRGIVEQCCHSTCSLFQLESYCN

LQVGQVELGGGPGAGSLQPLALEGSLQKRGIVEQCCTSICSLYQLENYCN

PQVGQVELGGGPGAGSLQPLALEGSLQKRGIVEQCCTSICSLYQLENYCN

LQVRDVELAGAPGEGGLQPLALEGALQKRGIVEQCCTSICSLYQLENYCN

PQVAQLELGGGPGADDLQTLALEVAQQKRGIVDQCCTSICSLYQLENYCN

PQVGALELAGGPGAGG-----LEGPPQKRGIVEQCCASVCSLYQLENYCN

PQVEQTELGMGLGAGGLQPLALEMALQKRGIVDQCCTGTCTRHQLQSYCN

*                   *    *****:*** * ** *** 



Networks of Genetic Processors

Work in progress: Applying NGPs to solve multialignment in DNA/protein sequences

To make n-alignment encode the solution as an array of gap/position

PLVSSLAL-

P---S-ADG

P---SL--G

String 1

String 2

String 3

111 100 100 100 111 101 110 110 011

The fitness function consider alignment mismatches and gap penalties


