
First International School on Biomolecular and
Biocellular Computing (ISBBC'11)

Osuna 6/9/2011

Dr. Alfonso Ortega, Dept. Ingeniería Informática Universidad Auntónoma de Madrid

alfonso.ortega@uam.es

Networks of Evolutionary Processors (NEPs)

3

NEPs computers

• Layout of the architecture

• Solving an instance of the Hamiltonian path problem with NEPs

• Programming tools for NEPs

• Graphic simulation environment on ‘classical’ architectures

• Simulation on clusters of computers

• Textual programming languages independent on the architecture

• Some applications

• Solving NP-problems with lineally bounded resources

• Some applications of NEPs to language processing

An overview of a possible architecture for NEPs computers

4

NEPs computers : Layout of the architecture

• NEPs are one of the natural computers currently not supported by any real hardware
platform

• NEPs are theoretically able to solve NP-problems with polynomial resources

• NEPs have to be currently simulated on ‘conventional’ computers loosing their
potential advantage

• There are almost any tool for considering NEPs an alternative to von Neumann
architectures

• Suitable hardware/software platforms to run them

• Programming languages and their processors (compilers)

• Software developing tools for NEPs

• In this part of the course we will show our approach to overtake these drawbacks

Motivation

5

NEPs computers: Layout of the architecture

Structure of current the system

Programming
Languages

System
specification

Simulation

Execution
platforms
(hdw)

·
·
··
·
·

.xml
.conf

.problem
Data_x

X

textual visual

Abstraction +

6

NEPs computers: Layout of the architecture

·
·
··
·
·

.xml
.conf

.problem
Data_x

X

textual visual

Other hdw architectures

Integration
P-Lingua

philosophy

Structure of the system (future)

Programming
Languages

System
specification

Simulation

Execution
platforms
(hdw)

Abstraction +

7

NEPs computers

• Layout of the architecture

• Solving an instance of the Hamiltonian path problem with NEPs

• Programming tools for NEPs

• Graphic simulation environment on ‘classical’ architectures

• Simulation on clusters of computers

• Textual programming languages independent on the architecture

• Some applications

• Solving NP-problems with lineally bounded resources

• Some applications of NEPs to language processing

An overview of a possible architecture for NEPs computers

8

NEPs computers: an example

• We will introduce a possible NEP to solve an a (toy) instance of the Hamiltonian path
problem in a undirected graph with linear performance.

• A Hamiltonian path is a path in an undirected graph that visits each vertex exactly
once

• It will be used with different purposes allong this talk

• We have considered it a particular case of a family of increasingly complex graphs
in order to test the performance of the architectures that simulate it.

Motivation

99

NEPs computers

Example: Hamiltonian path, undirected graphs

0

3

4

11

6

5
2

1010

NEPs computers

• The NEP for the previous graph

• Has a processor for each node. Only the strings that have already visited the
node cannot enter the node. There are no additional condition in the filters.

• The NEP adds a new processor (the output one) connected to the output
node.The output node only receives the solutions.

• The only node with non empty initial contents is the initial (it will content the
string i)

• Each non ouput processor adds its number in the right end of its strings.

• It is a simpler version than the one we will show with jNEPview

• It has less connections

• The filters of its nodes are more restrictive: they reject the strings that have
already visited the node

Example: Hamiltonian path, undirected graphs

1111

NEPs computers

Example: Hamiltonian path, undirected graphs.

0

3

4

11

6

5
2

1212

NEPs computers

Example: Hamiltonian path, undirected graphs. Step 0.

i

Node 0

Node 3

Node 4

Node 2

Node 5

Node 1

Node 6

1313

NEPs computers

Example: Hamiltonian path, undirected graphs . Step 1.

i

Nodo 0

Nodo 3

Nodo 4

Nodo 2

Nodo 5

Nodo 1

Nodo 6

i_0

i_0

1414

NEPs computers

Example: Hamiltonian path, undirected graphs . Step 2.

Nodo 0

Nodo 3

Nodo 4

Nodo 2

Nodo 5

Nodo 1

Nodo 6

i_0_1

i_0_1

i_0_2

No string contains
the right number

of symbols

1515

NEPs computers

Example: Hamiltonian path, undirected graphs . Step 3.

Nodo 0

Nodo 3

Nodo 4

Nodo 2

Nodo 5

Nodo 1

Nodo 6

i_0_2_5

i_0_1_2
i_0_1_4

i_0_2_5

i_0_1_2
i_0_1_4

1616

NEPs computers

Example: Hamiltonian path, undirected graphs . Step 4.

Nodo 0

Nodo 3

Nodo 4

Nodo 2

Nodo 5

Nodo 1

Nodo 6

i_0_1_2_3
i_0_1_2_5

i_0_1_2_5
i_0_1_4_5

i_0_2_5_4

i_0_1_4_3
i_0_1_4_5

i_0_2_5_4

No string contains
the right number

of symbols
.

1717

NEPs computers

Example: Hamiltonian path, undirected graphs . Step 5

Nodo 0

Nodo 3

Nodo 4

Nodo 2

Nodo 5

Nodo 1

Nodo 6
No string contains
the right number

of symbols

i_0_1_2_3_4
i_0_1_4_3_2

i_0_1_2_5_4
i_0_1_4_5_2

1818

NEPs computers

Example: Hamiltonian path, undirected graphs . Step 6

Nodo 0

Nodo 3

Nodo 4

Nodo 2

Nodo 5

Nodo 1

Nodo 6
No string contains
the right number

of symbols.

i_0_1_2_3_4
i_0_1_4_3_2

i_0_1_2_5_4
i_0_1_4_5_2

1919

NEPs computers

Example: Hamiltonian path, undirected graphs . Step 7

Nodo 0

Nodo 3

Nodo 4

Nodo 2

Nodo 5

Nodo 1

Nodo 6

i_0_1_2_3_4_5
i_0_1_4_3_2_5

2020

NEPs computers

Example: Hamiltonian path, undirected graphs . Step 8

Nodo 0

Nodo 3

Nodo 4

Nodo 2

Nodo 5

Nodo 1

Nodo 6

i_0_1_2_3_4_5_6
i_0_1_4_3_2_5_6

Solution

21

NEPs computers

• Layout of the architecture

• Solving an instance of the Hamiltonian path problem with NEPs

• Programming tools for NEPs

• Graphic simulation environment on ‘classical’ architectures

• jNEP, a Java multithreaded NEP simulator

• jNEPView, agraphical viewer for the simulation of jNEP

• NEPsVL, a visual programming language for NEPs

• Simulation on clusters of computers

• Textual programming languages independent on the architecture

• Some applications

• Solving NP-problems with lineally bounded resources

• Some applications of NEPs to language processing

An overview of a possible architecture for NEPs computers

2222

NEPs computers

• jNEP is simulator for NEPs with the following charateristics:

• Multithreaded

• Written in Java

• As general, flexible and rigorous as possible

• Input: xml files describing the NEP, example:

jNEP

2323

NEPs computers

• The design NEP class mimics the NEP model definition

jNEP

2424

NEPs computers

• jNEP demo for solving the instance of the Hamiltonian path problem above

• Input specification xml file:

F:\intercambio_baja\escuela_verano_red_tematica_osuna\

simulador_jnep\jnep-last\adelman.xml

• For running the program

> java -cp build/classes net.e_delrosal.jnep.ThreadedNEP Adleman.xml

jNEP

25

NEPs computers

• Layout of the architecture

• Solving an instance of the Hamiltonian path problem with NEPs

• Programming tools for NEPs

• Graphic simulation environment on ‘classical’ architectures

• jNEP, a Java multithreaded NEP simulator

• jNEPView, a graphical viewer for the simulation of jNEP

• NEPsVL, a visual programming language for NEPs

• Simulation on clusters of computers

• Textual programming languages independent on the architecture

• Some applications

• Solving NP-problems with lineally bounded resources

• Some applications of NEPs to language processing

An overview of a possible architecture for NEPs computers

2626

NEPs computers

• jNEPview works in the following way:

1. jNEP has to be run with the –save option (to store its sequence of computation
steps)

> java -cp build/classes net.e_delrosal.jnep.ThreadedNEP Adleman.xml –save

2. jNEPview is started (double click on the .jar)

1. The xml file of the NEP has to be loaded

2. The sequence of states is shown

3. Simulation can

1. Advance (forward and bakward) step by step

2. Advance an arbitrary number of steps

jNEPview

2727

NEPs computers

• Tracing jNEP for solving the instance of the Hamiltonian path problem above:

• After opening the diagram and all its nodes

jNEPview demo

2828

NEPs computers

• Tracing jNEP for solving the instance of the Hamiltonian path problem above:

• After pass 1

jNEPview demo

2929

NEPs computers

• Tracing jNEP for solving the instance of the Hamiltonian path problem above:

• After pass 2

jNEPview demo

3030

NEPs computers

• Tracing jNEP for solving the instance of the Hamiltonian path problem above:

• After pass 3

jNEPview demo

3131

NEPs computers

• Tracing jNEP for solving the instance of the Hamiltonian path problem above:

• After pass 4

jNEPview demo

3232

NEPs computers

• Tracing jNEP for solving the instance of the Hamiltonian path problem above:

• After pass 5

jNEPview demo

3333

NEPs computers

• Tracing jNEP for solving the instance of the Hamiltonian path problem above:

• After pass 6

jNEPview demo

3434

NEPs computers

• Tracing jNEP for solving the instance of the Hamiltonian path problem above:

• After pass 7

jNEPview demo

3535

NEPs computers

• Tracing jNEP for solving the instance of the Hamiltonian path problem above:

• After pass 8

jNEPview demo

3636

NEPs computers

• Tracing jNEP for solving the instance of the Hamiltonian path problem above:

• After pass 9

jNEPview demo

3737

NEPs computers

• Tracing jNEP for solving the instance of the Hamiltonian path problem above:

• After pass 10

jNEPview demo

3838

NEPs computers

• Tracing jNEP for solving the instance of the Hamiltonian path problem above:

• After pass 11

jNEPview demo

3939

NEPs computers

• Tracing jNEP for solving the instance of the Hamiltonian path problem above:

• After pass 12

jNEPview demo

4040

NEPs computers

• Tracing jNEP for solving the instance of the Hamiltonian path problem above:

• After pass 13

jNEPview demo

41

NEPs computers

• Layout of the architecture

• Solving an instance of the Hamiltonian path problem with NEPs

• Programming tools for NEPs

• Graphic simulation environment on ‘classical’ architectures

• jNEP, a Java multithreaded NEP simulator

• jNEPView, a graphical viewer for the simulation of jNEP

• NEPsVL, a visual programming language for NEPs

• Brief introduction to AToM3

• NEPsVL

• Simulation on clusters of computers

• Textual programming languages independent on the architecture

• Some applications

• Solving NP-problems with lineally bounded resources

• Some applications of NEPs to language processing

An overview of a possible architecture for NEPs computers

4343

NEPs computers

• AToM3

1. Python software platform to develop visual domain languages

2. UML oriented model design

1. The user defines the class diagram

2. Extends it with graphical appearance

3. Generates a canvas where to graphically design the final program by
means of predefined buttons and menu options associated with the UML
diagram

4. Validates and generates code

• Demo

• Double click on the atom3.py icon

AToM3-NEPsVL Demo

4444

NEPs computers

• How to design a new DSVL (domain specific visual language) with AToM3?

• A ‘metamodel’ of the domain elements has to be defined. This is the NEP metamodel

AToM3-NEPsVL Demo

4545

NEPs computers

• How to design a new DSVL (domain specific visual language) with AToM3?

• Then, the graphical appearance with wich each element of the domain will be
included in the programs has to be designed.

• The following (toy) example shows the one used for NEPs:

• Rectangles for processors and for the alphabet

• Triangles for filters

• Ovals for rules

• Texts for the rest

• When designing the graphical appearance the programmer also specifies the
set of proper actions that have to be performed when the element under
consideration is added to the programs

AToM3-NEPsVL Demo

4646

NEPs computers

• How to design a new DSVL (domain specific visual language) with AToM3?

• Graphical appearance of each element

AToM3-NEPsVL Demo

4747

NEPs computers

• How to design a new DSVL (domain specific visual language) with AToM3?

• The buttons by means of wich the programmer will interact with AToM3 for
graphically design NEPs have also to be designed.

• The following figure shows the AToM3 window for programming NEPs

• The first 11 buttons (below the title ‘NEPs’) insert into the program,
respectively

• A processor

• A filter

• A deletion rule

• A substitution rule

• An insertion rule

• A derivation rule (they will be described later)

• Four tipical stopping conditions

• The last 4 buttons adds extra features that ease the programming.
They will be explained in the following pages

AToM3-NEPsVL Demo

4848

NEPs computers

• How to design a new DSVL
(domain specific visual
language) with AToM3?

• Buttons by means of
wich the programmer will
interact with AToM3

Demo

4949

NEPs computers

• Some useful extra features of AToM3?

• AToM3 provides programmer with a set of useful features to simplify the
programming

• The programmer can specify several python programs to process the
complete program. They are very useful for, for example

• Validating the program (check semantic constraints that valid programs
have to comply with)

• Generating code (translate the graphic programs into other
representations, in the case of NEPs, for example, into xml files for
jNEP, or into NEPsLingua code)

• Launching some task after finishing the process of the program (for
example jNEP and jNEPView)

• In the previous page, these three features are associated with the last two
buttons

AToM3-NEPsVL Demo

5050

NEPs computers

• Some useful extra features of AToM3?

• AToM3 provides programmer with a set of useful features to simplify the
programming

• Graph grammars

• Some mechanical sections of the graphical programs can be
automatically written (actually drawn), for example

• The output and input filters of each processor can be automatically
added

• All the connections of complete graphs can also be automatically
added

• These two features are associated with the corresponding buttons
(‘auto-filter’ and ‘complete graph’) of the previous page

• Graph grammars are just grammars that change some ocurrences of a
subgraph

• These derivations rules are graphically defined in AToM3.

• The following page shows the ‘auto-filter’ and ‘complete graph’ rules

AToM3-NEPsVL Demo

5151

NEPs computers

• Some useful extra features of AToM3?

• AToM3 provides programmer with a set of useful features to simplify the
programming

• Graph grammars

AToM3-NEPsVL Demo

52

NEPs computers

• Layout of the architecture

• Solving an instance of the Hamiltonian path problem with NEPs

• Programming tools for NEPs

• Graphic simulation environment on ‘classical’ architectures

• Simulation on clusters of computers

• Textual programming languages independent on the architecture

• Some applications

• Solving NP-problems with lineally bounded resources

• Some applications of NEPs to language processing

An overview of a possible architecture for NEPs computers

5353

NEPs computers

• Which hardware/software platform use to run NEPs programs?

• There is no real hardware platform for NEPs

• The theoretical improvement (in the performance) is lost when simulating them
on ‘conventional’ computers

• Clusters of computers could be the best option

• To overtake the performance lost

• Although renouncing to the theoretical power

Simulation on clusters of computers: motivation

54

NEPs computers

• Some of our researchers have developed a software C++/mpi platform for automatic
paralellisation of sequential codes using dynamic graphs partitioning and based on
user-adaptable load balancing

• The programmer has only to write its algorithm in a predefined way.

• The platform handles all the low level details ensuring the best possible performance
for the cluster under consideration.

Simulation on clusters of computers: structure of the system

57

• a

Estructura del sistema

58

Estructura del sistema

59

NEPs computers

• Layout of the architecture

• Solving an instance of the Hamiltonian path problem with NEPs

• Programming tools for NEPs

• Graphic simulation environment on ‘classical’ architectures

• Simulation on clusters of computers

• Textual programming languages independent on the architecture

• NEPsLingua

• Some applications

• Solving NP-problems with lineally bounded resources

• Some applications of NEPs to language processing

An overview of a possible architecture for NEPs computers

60

NEPs computers

• Syntax as close as possible to the one used to describe NEPs in the literature

• To reduce the complexity and size of other kinds of specification

• Xml configuration files (jNEP)

• Domain specific visual languages (NEPsVL)

• As close to P-Lingua as possible with the aim of offering a set of similar textual
programming languages to researchers who wants to use natural computing to solve
their problems

NEPsLingua: goals

61

NEPs computers

• Directive @A for the alphabet of the NEP (its set of symbols)

@A={X,S,a,b,o,O}

• @N for the nodes:

• The most complex type of NEPs-Lingua data
• Non indexed (defined by means of their names), {initial, final}

• With numeric indices,
{m{i}: 0<=i<=10}

• With symbolic indices,
{s{j}: j->{o,a,b}}

• That could be mixed in the same sentence for declaring the nodes of the NEP
(note the use of + for the union of sets)

@N={initial, final} + {m{i,j}: 0<=i<=10, j->{o,a,b}}

NEPsLingua syntax (by examples)

62

NEPs computers

• Initial content

• The set of strings that a given node initially contains. Notice that the node is
written as a parameter of the content directive @c

@c{n{X}} = {X, S}

• Rules
• --> separates left and right hand side

• They have to be contained in sets
• # represents the empty string

• All types are available
• Insertion # -->a

• Deletion a -->#

• Substitution S-->a

• And are put together in sets associated to the node by means of the directive @r

@r{n{S}}= {a -->#, S-->a}

NEPsLingua syntax (by examples)

63

NEPs computers

• Filters

• We have grouped the different filters of the literature in six types

• Types 1, 2, 3, 4

• Defined by means of regular expressions

• Defined by sets of strings
• Each node has an input and an oupt filter (suffixes if and of, respectively)

• Each filter has its ‘permitting and forbidding contexts’ (prefixes p and f)

• We use the followting syntax for regular patterns
• Union []

• Intersection][

• Empty string #

• Examples of filters for several nodes
@pif{n{S}}= {1, {abc, oo}}

@fof{initial}=

{@regular_pattern, (((a[]b)+)][(c*))][# }

@pif{n{2,a}}= {@set, {a,ab,aabb}}

NEPsLingua syntax (by examples)

64

NEPs computers

• Connections (@C)

• Complete graphs in a compatct form
@C=@complete

• An explicit set of connections defined by means of pairs of nodes
@C={ (final,n{X}), (n{X},m{9,a}) }

• Stopping conditions (@S)

• Two consecutive equal configurations@no_change

• Take a maximum number of steps @max_steps

• Some node is no more empty @non_empty_node

@S={ @no_change,

@max_steps = 3+4,

@non_emtpy_node={n{O}, n{X}}

}

NEPsLingua syntax (by examples)

65

NEPs computers

• We will consider a toy NEP that
• It has two nodes that, respectively, delete and insert the symbol B.

• The initial word AB travels from one node to the other.

• The first node removes the symbol B from the string before leaving it in the net.

• The other node receives the string A and adds again the symbol B.

• The resulting string comes back to the initial node and the same process takes
place again.

NEPsLingua syntax (complete examples)

66

NEPs computers

• It has the following NEPsVL representation

NEPsLingua syntax (complete examples)

67

NEPs computers

• And the following xml specification for jNEP

NEPsLingua syntax (complete examples)

68

NEPs computers

• And the following xml specification for jNEP

NEPsLingua syntax (complete examples)

69

NEPs computers

• And the following NEPsLingua specification

@A={A,B}

@N={ n{i}: 0 <= i <= 1}

@c{n{0}}={A,B}

@r{n{0}}={B-->#}

@r{n{1}}={#-->B}

@S={@max_steps = 8 }

@C={@complete}

• It is obvious the liter size and greater simplicity of the NEPsLingua program

• These advantages are even greater as the NEPs becomes more complex

NEPsLingua syntax (complete examples)

70

NEPs computers

• The semantic constraints for every NEPs-Lingua program are outlined below:

• It contains exactly one alphabet and one set of node declarations.

• It needs at most one of the following elements:

• Connection declaration set. By default, the graph is considered complete.

• Set of stopping conditions. @no_change is assumed by default.

• Filters, rules and initial contents are optional.

• Nodes have to be defined before they are used

• Each symbol representing rules, filters and initial contents has to be included in
the alphabet

NEPsLingua semantics (working on it)

71

NEPs computers

• ‘On demand’ at least for

• jNEP (Xml configuration file)

• Our cluster platform

NEPsLingua code generators (soon)

72

NEPs computers

• Layout of the architecture

• Solving an instance of the Hamiltonian path problem with NEPs

• Programming tools for NEPs

• Graphic simulation environment on ‘classical’ architectures

• Simulation on clusters of computers

• Textual programming languages independent on the architecture

• Some applications

• Solving NP-problems with lineally bounded resources

• Some applications of NEPs to language processing

An overview of a possible architecture for NEPs computers

73

NEPs computers

• This possibility has been shown throughout the talk

• Hamiltonian path problem

• It is easy to generalize the use of NEPs (jNEP and our cluster platform) for other NP
problems

Solving NP problems with lineally bounded resources

74

NEPs computers

• Layout of the architecture

• Solving an instance of the Hamiltonian path problem with NEPs

• Programming tools for NEPs

• Graphic simulation environment on ‘classical’ architectures

• Simulation on clusters of computers

• Textual programming languages independent on the architecture

• Some applications

• Solving NP problems with lineally bounded resources

• Some applications of NEPs to language processing

An overview of a possible architecture for NEPs computers

7575

NEPs computers

• Natural Language Processing (NLP) is a subfield of Computational Linguistics that
focuses on building automatic systems able to interpret or generate information
written in natural language

• The syntactical level is one of the linguistic levels a typical NLP system has to cover:

• To use parsers to detect valid structures in the sentences, usually in terms of a
certain grammar.

Parsing of formal and natural languages run on clusters

7676

NEPs computers

• Earley (one of the most efficient algorithms) and its derivatives provide parsing in
polynomial time, with respect to the length of the input:

• Linear in the average case

• n2 in the worst case for unambiguous grammars and

• n3 in the worst case for ambiguous grammars

• Bel Enguix, G., Jimenez-Lopez, M. D., Merca¸s, R. and Perekrestenko, A. (2009):
Networks of evolutionary processors as natural language parsers. In proc. ICAART
09.

• Outlines a bottom up approach to natural language parsing with NEPs

• Extends NEPs with context dependent rules

• Linear performance in the average case

Other approaches

7777

NEPs computers

• PNEP goal:

• NEP based and top-down strategy

• Keeping expressive power of NEP processors bounded

• Get a similar performance

• Get all the possible derivations of each string

• Without modifying the grammar

• No normal form needed

• Ambiguity allowed

• Recursive, erasing, renaming rules allowed

PNEPs: motivation

7878

NEPs computers

• PNEPs use context free rules rather than classic substitution rules A → B , A∈V and
B∈V+ instead of A → B , A,B∈ V

• It is a classic way of handling strings in theoretical computer science

• It does not imply expressive power greater than regular

• In Csuhaj-Varju, E. Martin Vide, C., Mitrana, V.: HNEPs are Computationally
Complete. Acta Informatica; NEPs need different sets of additional nodes when
simulating the application of context free rules:

• To rotate the string

• To actually apply the rule and

• To delete additional symbols

• We can consider this mechanism as a subrutine so we always can build a classic
NEP equivalent to any PNEP.

• This technique is sketched as follows:

PNEPs: main extension to NEP

79

NEPs computers

• Locating the non terminal by rotation

• Each symbol in the alphabet needs these additional nodes

Node Rule Per. Input For. Input Per. Ouput For. Output

X := Zx {$}
U \

(N ∪ T)
{Zx}

ε := X’ (left) {Zx} {X’}

Zx := ε (right) {Zx, X’} {X’} {Zx}

X’ := X {X’} {Zx}

1
()

rotacion
XN

2
()

rotacion
XN

3
()

rotacion
XN

4
()

rotacion
XN

NEPs to apply context free rules

80

NEPs computers

1
()

rotacion
xN

zyx

xyz
2

()
rotacion

xN
zy Zx

Zx yz
3

()
rotacion

xN
X’zy Zx

X’Zx yz
4

()
rotacion

xN
X’zy

xzy

NEPs to apply context free rules

Node Rule Per. Input For. Input Per. Ouput For. Output

X := Zx {$}
U \

(N ∪ T)
{Zx}

ε := X’ (left) {Zx} {X’}

Zx := ε (right) {Zx, X’} {X’} {Zx}

X’ := X {X’} {Zx}

1
()

rotacion
XN

2
()

rotacion
XN

3
()

rotacion
XN

4
()

rotacion
XN

81

NEPs computers

• Applying the rule

• Each rule r S →x, where x = x1x2…xpr

• Needs the following additional nodes: (k ∈ {1,..,p})

Node Rule Per. Input For. Input Per. Ouput For. Output

S := Yr U \ (N ∪ T) {Yr}

ε := xr
k (left) Yr ∪ {xr

k+1…xr
pr

} xr
k

Yr := ε (right) Yr ∪ {xr
1…xr

pr
} {xr

1…xr
pr

} Yr

xr
k := xk xr

k Yr xr
k

0

1
()

regla
rN

1
()

k

regla
rN

1

1
()rp

regla
rN

+

1

1
()rp k

regla
rN

+ +

NEPs to apply context free rules

82

NEPs computers

S1 := yz

S
0

1
()

regla
rN

Yr z2Yr
2

1
()

regla
rN

3

1
()

regla
rN

y2z2Yr
4

1
()

regla
rN

y2z2

4

1
()

regla
rN

6

1
()

regla
rN

y2z2

7

1
()

regla
rN

yz2

yz

Node Rule Per. Input For. Input Per. Ouput For. Output

S := Yr U \ (N ∪ T) {Yr}

ε := xr
k (left) Yr ∪ {xr

k+1…xr
pr

} xr
k

Yr := ε (right) Yr ∪ {xr
1…xr

pr
} {xr

1…xr
pr

} Yr

xr
k := xk xr

k Yr xr
k

0

1
()

regla
rN

1
()

k

regla
rN

1

1
()rp

regla
rN

+

1

1
()rp k

regla
rN

+ +

NEPs to apply context free rules

8383

NEPs computers

• A PNEP is built from a context free grammar in the following way:
• We assume that each derivation rule in the grammar has a unique index that can

be used to reconstruct the derivation tree.
• There is a node for each non terminal (*).

• Each node applies to its strings all the derivation rules for its non terminal.
• The filters, as well as the graph layout, allow all the nodes to share all the

intermediate steps in the derivation process.
• An additional output node, is used to contain the parsed string: a version of the

input, enriched with information that will make it possible to reconstruct the
derivation tree (the rules indices). This node will only allow enter this parsed
string

• The graph is complete.
• The initial content of the node that corresponds to the axiom is the axiom itself.

• The designer could choose different contents for each node.
• From just a node for all the derivation rules
• To a node for each different right hand side (each rule) in the grammar

Context free grammar PNEP translation

8484

NEPs computers

• For example (without the
additional output processor,
filters will be omitted for clarity):

1: X→SO

2: S →aSb

3: S →ab

4: O→oO

5: O→Oo

6: O→o

Context free grammar PNEP translation

84

X Node

O Node

S Node

O→oO
O→Oo
O→o

X→SO

S→aSb
S→ab

X

8585

NEPs computers

• The computation starts

Context free grammar PNEP translation

85

X Node

O Node

S Node

O→oO
O→Oo
O→o

X→SO

S→aSb
S→ab

X

8686

NEPs computers

• The node of the axiom applies
its rule

Context free grammar PNEP translation

86

X Node

O Node

S Node

O→oO
O→Oo
O→o

X→SO

S→aSb
S→ab

1SO

8787

NEPs computers

• Each node gets the strings it
can modify

Context free grammar PNEP translation

87

X Node

O Node

S Node

O→oO
O→Oo
O→o

X→SO

S→aSb
S→ab

1SO

1SO

8888

NEPs computers

• And applies to them its rules

Context free grammar PNEP translation

88

X Node

O Node

S Node

O→oO
O→Oo
O→o

X→SO

S→aSb
S→ab

12aSbO
13abO

1S4oO 1S5oO
1S6o

8989

NEPs computers

• The output node builds a regular
expression from the string being
parsed with the possible
sequence of applied rules
between its symbols.

• For example for the string abo
we will write for this regular
expression the following

r*ar*br*or*

Context free grammar PNEP translation

89

X Node

O Node

S Node

O→oO
O→Oo
O→o

X→SO

S→aSb
S→ab

12aSbO
13abO

1S4oO 1S5oO
1S6o

Output node

9090

NEPs computers

• After some additional steps
computation finishes and the
output node contains:

13ab6o

Context free grammar PNEP translation

90

X Node

O Node

S Node

O→oO
O→Oo
O→o

X→SO

S→aSb
S→ab

12aSbO
13abO

1S4oO 1S5oO
1S6o

Output node

13ab6o

91

NEPs computers

• Now, that we now NEPsLingua we can appreciate the simplicity and closeness of its
programs to the grammar corresponding to a PNEP.

• PNEP for parsing de context free grammar of these derivation rules

X → SO

S → aSb | ab

O → Oo | oO | o

• Can be written in NEPsLingua as follows
@A={X,S,a,b,o,O}

@N={final}+{n{symbol}:symbol->{X,S,O}}

@c{n{X}}={X}

@r{n{X}}= {X-->SO}

@r{n{S}}= {S-->aSb, S-->ab}

@r{n{O}}= {O-->o, O-->oO, O-->Oo}

@pif{n{X}}={1,{X}} @pif{n{S}}={1,{S}} @pif{n{O}}={1,{O}}

@C=@complete

@S={ @non_emtpy_node={final} }

NEPsLingua for PNEPs

92

NEPs computers

• Only for comparison purposes, a possible jNEP xml specification file for the same NEP
is shown below

NEPsLingua for PNEPs

93

NEPs computers

• In the computer

PNEPs demo

9494

NEPs computers

• The basic PNEP model generates strings from the axiom in a rather blind way.

• No terminal string is discarded until it is larger that the target string.

• Parsers usually discard parsing choices as soon as a terminal is not in its right place
(usually in a left to right order).

• We have implemented a naive filter that removes those strings that contains terminals
that do not belong to the target string.

PNEPs implemented improvementes: bad terminals filtering

94

9898

NEPs computers

• The basic PNEP model explicitly stores a different string for each different derivation that only
differs in the order in which non terminals are chosen. All these derivations corresponds to the
same derivation tree (we are not talking about ambiguity in this case)

• We actually only need a string to stand for each derivation tree. Top down techniques usually
solve this difficulty by applying some given order (usually the left-most non terminal is chosen)

• In the NEP config file, this rules are described with the following syntax:

<RULE ruleType="leftMostParsing" symbol="NON-TERMINAL" string="SUBSTITUTION_STRING"
nonTerminals="GRAMMAR_NON-TERMINALS"/>

• For that porpuse we have defined a new NEP rule. Given the rule r: A →a, the action of the rule
on a word w, r(w) is defined by

r(w)={t | w= w1Aw2 and t=w1aw2 and only_contains_terminals(w1), w1,w2 are words over V}

PNEPs implemented improvementes: depth first non terminal choice

98

9999

NEPs computers

• We have previously described the naive “bad terminals” filter we have implemented

• We can add Left and right-corner filtering by checking both ends of the generated
strings: those strings with misplaced terminals in any of the ends (left or right) could
be discarded.

• This test could be extended to the left-most (respectively right-most) non terminal by
means of the classic first (respectively last) sets.

PNEPs non implemented improvementes: left and right-corner filtering

99

100100

NEPs computers

• We plan:

• To add PNEP to our corpus and compare it with actual NLP parsers (Freeling,
etc.)

• To add semantics to PNEP to design a compiler tool

• To tackle some semantic NLP problem by means of the previous model

100

PNEPs further research lines

101101

THANK YOU FOR YOUR ATTENTION

101

