First International School on Biomolecular and
Biocellular Computing (ISBBC'11)

Osuna 6/9/2011

Dr. Alfonso Ortega, Dept. Ingenieria Informatica Universidad Aunténoma de Madrid

Networks of Evolutionary Processors (NEPs)

NEPs computers

An overview of a possible architecture for NEPs computers

Layout of the architecture
Solving an instance of the Hamiltonian path problem with NEPs
Programming tools for NEPs
Graphic simulation environment on ‘classical’ architectures
Simulation on clusters of computers
Textual programming languages independent on the architecture
Some applications
Solving NP-problems with lineally bounded resources
Some applications of NEPs to language processing

NEPs computers : Layout of the architecture

Motivation

NEPs are one of the natural computers currently not supported by any real hardware
platform

NEPs are theoretically able to solve NP-problems with polynomial resources

NEPs have to be currently simulated on ‘conventional’ computers loosing their
potential advantage

There are almost any tool for considering NEPs an alternative to von Neumann
architectures

Suitable hardware/software platforms to run them
Programming languages and their processors (compilers)
Software developing tools for NEPs
In this part of the course we will show our approach to overtake these drawbacks

NEPs computers: Layout of the architecture

Structure of current the system

Abstraction +

Programming
Languages

/
.conf || pata_ x Sl System
problem{ x specification
S
Simulation
Execution
platforms
(hdw)
2l
NEPs computers: Layout of the architecture
Structure of the system (future)
Abstraction +
(\ .
Programming
Languages
Integration
T P-Lingua
.conf || pata_x <l philosophy System
problem{ x specification
S
Simulation
_ Execution
Other hdw architectures platforms
(hdw)

NEPs computers

An overview of a possible architecture for NEPs computers

Layout of the architecture
Solving an instance of the Hamiltonian path problem with NEPs
Programming tools for NEPs
Graphic simulation environment on ‘classical’ architectures
Simulation on clusters of computers
Textual programming languages independent on the architecture
Some applications
Solving NP-problems with lineally bounded resources
Some applications of NEPs to language processing

NEPs computers: an example

Motivation

We will introduce a possible NEP to solve an a (toy) instance of the Hamiltonian path
problem in a undirected graph with linear performance.

A Hamiltonian path is a path in an undirected graph that visits each vertex exactly
once

It will be used with different purposes allong this talk

We have considered it a particular case of a family of increasingly complex graphs
in order to test the performance of the architectures that simulate it.

NEPs computers

Example: Hamiltonian path, undirected graphs

NEPs computers
Example: Hamiltonian path, undirected graphs

® The NEP for the previous graph
Has a processor for each node. Only the strings that have already visited the
node cannot enter the node. There are no additional condition in the filters.
The NEP adds a new processor (the output one) connected to the output
node.The output node only receives the solutions.
The only node with non empty initial contents is the initial (it will content the
string i)
Each non ouput processor adds its number in the right end of its strings.

® Itis a simpler version than the one we will show with]NEPview

It has less connections
The filters of its nodes are more restrictive: they reject the strings that have
already visited the node

10

NEPs computers

Example: Hamiltonian path, undirected graphs.

NEPs computers

Example: Hamiltonian path, undirected graphs. Step 0.

Node 4

Node 3 Node 1

Node 0

Node 6

Node 5

Node 2 12

NEPs computers

Example: Hamiltonian path, undirected graphs . Step 1.

io0
Nodo 4
Nodo 3 Nodo 1
i
i 0

Nodo 0

Nodo 6

Nodo 5 O
Nodo 2 13

NEPs computers

Example: Hamiltonian path, undirected graphs . Step 2.

i 01
Nodo 4
Nodo 3 Nodo 1
Nodo 0 io?2

- Nodo 6

i 01
No string contains
the right number O

of symbols
Nodo 5 4

Nodo 2 14

NEPs computers

Example: Hamiltonian path, undirected graphs . Step 3.

i025

1012
i 014
Nodo 4
Nodo 3 Nodo 1
i025
Nodo 0 io1l2
i 014 Nodo 6
Nodo 5 O
Nodo 2

15

NEPs computers

Example: Hamiltonian path, undirected graphs . Step 4.

1 0123
i 0125
i 0254 i 0254
Nodo 4
Nodo 3 Nodo 1
i 0125
i 0145
Nodo 0
Nodo 6
i 0143
10145 No string contains
the right number Q
of symbols
Nodo 5 4
Nodo 2

16

NEPs computers

Example: Hamiltonian path, undirected graphs . Step 5

i 01254
i 01452
Nodo 4
Nodo 3 Nodo 1
Nodo 0 i 01234
i_0_1_4_3_2 Nodo 6
No string contains
the right number
of symbols O
Nodo 5
Nodo 2 17

NEPs computers

Example: Hamiltonian path, undirected graphs . Step 6

i01254
i01452
Nodo 4
Nodo 3 Nodo 1

Nodo 0 i 01234
i_0_1_4_3_2 Nodo 6
No string contains
the right number
of symbols. O
Nodo 5

Nodo 2 18

NEPs computers

Example: Hamiltonian path, undirected graphs . Step 7

Nodo 4

Nodo 3 Nodo 1

012345

N0 14325

Nodo 0
Nodo 6
Nodo 5 <:i>
Nodo 2 19

NEPs computers

Example: Hamiltonian path, undirected graphs . Step 8

Nodo 4
N O 0 Nodo 1
Nodo 0
Nodo 6
i 0123456 O
Nodo 5 i0143256

Nodo 2 20

NEPs computers

An overview of a possible architecture for NEPs computers

Layout of the architecture
® Solving an instance of the Hamiltonian path problem with NEPs
® Programming tools for NEPs
Graphic simulation environment on ‘classical’ architectures
* JNEP, a Java multithreaded NEP simulator
* JNEPView, agraphical viewer for the simulation of J]NEP
* NEPsVL, a visual programming language for NEPs
Simulation on clusters of computers
Textual programming languages independent on the architecture
Some applications
Solving NP-problems with lineally bounded resources
Some applications of NEPs to language processing

a1

NEPs computers
jNEP

® JNEP is simulator for NEPs with the following charateristics:
Multithreaded
Written in Java
As general, flexible and rigorous as possible
Input: xml files describing the NEP, example:

2|

NEPs computers
jNEP

® The design NEP class mimics the NEP model definition

<<imerlaces > PR, <<imerlaces >
StoppingCondition Filter EvolutionaryRule
Artributes Arrributes Word
i T s haih
g 3 . . e
pUbiiG B oSS DDA EINED) public boolean applyFilter{ Word wy | | PuBlic Word[0.7] applyRule(Word s[0.71) | | i ate String symbolList[0..*] = new ArrayList<String>(Q)

Operations
. . outputFilter i
stoppingConds o inputFilter = ruleList - publ!c ?Nor.d(\n\rord))) .
oA publicint indexOf(String s, int beginlndex)

— Evoluti P public void append(5tring s)
N‘EP VOILTIONArYLrocessar wordList public Word subword(int beginindex, int endindex)
- Ll / public String[0.*] getAlphabet()
Atributes . . Syt . . o.m
package boolean edges[0.%,0.%] evaolProcs public EvolutionaryProcessor(String config)
public vaid runi)
Cperation: ; ;
public MEP{ String configFile) private void sendAndRemoveWords()
public void rung) . private void receiveWords()
public boolean stops() private boolean passOutputFilter Word word)
public String getNEPConfigl) private boolean passinputFilteri Word word)
private void evolveProcessori)

NEPs computers
jNEP

® JNEP demo for solving the instance of the Hamiltonian path problem above
Input specification xml file:

F:\intercambio_baja\escuela_verano_red_tematica_osuna\
simulador_jnep\jnep-last\adelman.xml

For running the program

> java -cp build/classes net.e_delrosal.jnep.ThreadedNEP Adleman.xml

ﬂ

NEPs computers

An overview of a possible architecture for NEPs computers

Layout of the architecture
Solving an instance of the Hamiltonian path problem with NEPs
Programming tools for NEPs
Graphic simulation environment on ‘classical’ architectures
* JNEP, a Java multithreaded NEP simulator
* JNEPView, a graphical viewer for the simulation of NEP
* NEPsVL, a visual programming language for NEPs
Simulation on clusters of computers
Textual programming languages independent on the architecture
Some applications
Solving NP-problems with lineally bounded resources
Some applications of NEPs to language processing

K

NEPs computers
JINEPview

JNEPview works in the following way:

JNEP has to be run with the —save option (to store its sequence of computation
steps)

> java -cp build/classes net.e_delrosal.jnep.ThreadedNEP Adleman.xml —save

JNEPview is started (double click on the .jar)
1. The xml file of the NEP has to be loaded
2. The sequence of states is shown
Simulation can
1. Advance (forward and bakward) step by step
2. Advance an arbitrary number of steps

2|

NEPs computers

JNEPview demo

® Tracing JNEP for solving the instance of the Hamiltonian path problem above:
After opening the diagram and all its nodes
o JNep Visualizer — JNep NODE: NODE 0 Nep NODE: NODE 1
| vooro
JNep NODE: NODE 2 JNep NODE: NODE 3
—l —' JNep NODE: NODE 4 JNep NODE: NODE
| _wooes | _wooes
JNep NODE: DE 6 JNep NODE: NODE
27 |
NEPs computers
JNEPview demo
[]

Tracing JNEP for solving the instance of the Hamiltonian path problem above:

After pass 1

Jhiep Visualizer e NODE: NODE INep NODE: NODE L
Archive Si 5 g
(" Step Backward | [Step Fordward Step To... | Evolution Step: I Communication Steg T
; hep NODE: NODE 2 e
5 5k

INep NODE: NODE 4

JNep NODE: NOBE &

o

Kl

NEPs computers

JNEPview demo

® Tracing JNEP for solving the instance of the Hamiltonian path problem above:
After pass 2
INep Visualizer JNep NODE: NODE ¢ Mep NODE i
Archive Simulation i1
[|
! ic JNep NODE: NODE 2 ALQ; |Nep NODE: NODE 3
—I —l JNep NODE: NODE 4 INep NODE: NODE 5
=5 [soesl|
29 |
NEPs computers
JNEPview demo
[]

Tracing JNEP for solving the instance of the Hamiltonian path problem above:

After pass 3

Archive Simulation

JNep Visualizer

Step Backward)

Step Fordward)

Step To...

=

N

JNep NODE: NODE ©

i_o_1 0.3
i 03
Evolution Step: 2 Communication Step: 2 i_0_6
Ta JNep NODE: NODE 2 JNep NODE: NODE 3
—’ i 01 01
i 03
JNep NODE: NODE 4 jMep NODE: NODE 5
i 01 o1
i 03 06

JNep NODE: NODE 6

JNep NODE: NODE 7

EJ

NEPs computers

JNEPview demo

® Tracing JNEP for solving the instance of the Hamiltonian path problem above:
After pass 4
INep Visualizer jNep NODE: NODE O JNep NODE: NODE 1
Archive 1010 031
(" Step Backward) (Step Fordward } [StepTo..) Evolution Step: 3 Communication Step: 2 :_g:ég
| _woco |
* e JNep NODE: NODE 2 o JNep NODE: NODE 3
—[—I JNep NODE: NODE 4 JNep NODE: NODE 5
| voves | wooe: |
JNep NODE: NODE 6 Jiep NODE: NODE
31 |
NEPs computers
JNEPview demo
[J

Tracing JNEP for solving the instance of the Hamiltonian path problem above:

After pass 5

INep Visualizer JNep NODE: NODE O JNep NODE: NODE 1
Archive i 031 i 060
013 030
(Step Backward) (Step Fordward) (StepTo..) Evolution Step: 3 Communication Step: 3 i0.10
032
i_0.1.2
0,13
034
i 0_1_4
—, 065
i 015
JNep NODE: NODE 2 JNep NODE: NODE 3
—] —! i 031 i 060
io13 i 630
065 i 010
i 015 031
i_0_3.2
012
1034
i 0_1_4
JNep NODE: NODE 4 JNep NODE: NODE 5
TER! i 031
i 0.1 032
i 06 S 012
i 015 i_0.3.4
014
JNep NODE: NODE 6 JNep NODE: NODE 7
—) i 060
030
i 0.1 0
i 065
i G 1.5

Kl

NEPs computers

JNEPview demo

® Tracing JNEP for solving the instance of the Hamiltonian path problem above:
After pass 6

INep Visualizer JNep NODE: NODE 0 JNep NODE: NODE 1
Archive 5i i £ 03
1

(Step Backward) (Step Fordward) (StepTo..) Evolution Step: 4 Communication Step: 3

* JNep NODE: NODE 2 JNep NODE: NODE 3
i 03 060

JNep NODE: NODE 4 JNep NODE: NODE 5

JNep NODE: NODE 6 JNep NODE: NODE 7

NEPs computers

JNEPview demo

® Tracing JNEP for solving the instance of the Hamiltonian path problem above:
After pass 7

INep Visualizer JNep NODE: NODE 0 JNep NODE: NODE 1
Archive Si i i_0_32_

(" step Backward) (Step Fordward } (StepTo.. } Evolution Step: 4 Communication Step: 4 i_6_1_0.

l i 0_1 0
030
I JNep NODE: NODE 2

| A —

JNep NODE: NODE 3

e r——

JNep NODE: NODE 4 JNep NODE: &

JNep NODE: NODE & JNep NODE: NODE 7

[tonian path problem above:

36

NEPs computers
JNEPview demo
tance of the Ham

NS

ing the i

ing JNEP for solv
After pass 8

Trac

n
(92]
S— e T S TN | o W B [Oy W O«
= o wi P o 23 " o
7 il o [i ¥ 4
g 8 2] o} 3 g]
Z = z= & a z z 4
i W i al i
Q 3 [~1 Q [a] [~]
L=} (=] Q Q Q Q
3 ¢ g m = = z
g g :
by 5 5 ; ;]
2 [t st vttt st ot et | o o o e o 0) 1 o1 e £ 0] Zlevvvrvovve [Elrcvosoooss |Z
S
.
° ~ r o (4] ° o - &
l i o ul
a a [} a o a aQ =} a
S 2 2 S 2 2 g g
4 4 g i b= i a 3
8 5] Is) <} [s} a 5] 5]
¢ g g g 0 S 2 g 2
- o . o o o o
g g F 5 c g g 5 5
Z Elnmannmnann [ElersressesTs | 50000000 S o) el = £ Tt
5,5,3_5_5_.3_5, ,\., y\., ,3, G_O, 5.5, .\., 5, 5, 1 \ I
Z,I,Q_G_G_é_%(.., o e 4_4,2, o S = = ’ Y
B e e T © ©O = e
doldoodd oo o dooods s m oo o) g0 ol 6l 5 o))
o o P it B B I it I e m) V1" e o o o o o
M m e &
§ = c ¢
¢ o o £ g
§ O —_ Y= 5
g > O g
: a :
g (%] @ E
& a &Y e
° Z na .
P P
5 Wb = s 3
& &
m Z 2 :
3 3
2 g
& &
q | <) |
3 d - @ g
g = 3 =
2 = -3
> g (@] > 5
a @ a &
3 | c 3
) =)
i o g
s (7] £
& £
g = O g
& @] &
\ —
B w ®©]
i o Z
& Z g
o " e a
i £
£ o) = &
b c ’
s °
$ Q s
£ £
v © 2
< — <

[tonian path problem above:

NEPs computers
JNEPview demo
tance of the Ham

NS

ing the i

ing JNEP for solv
After pass 10

Trac

N~ ©
(92] ™
- W TUE| ([e——— — T eIk T .. | [———— | semes—— VU1 <N T
)
>
8
g 2 g o] g 2 g
8 8 = 8 8
g o o o § o § § §leoepoovnee |§
o)
o
S
5 =y o 3 T
°
e}
S e g g S e g
G
g g g g 8 g g g
b b g 8 [b b i
S =
|)] m m)
Q - T
: £ = 2 5
5 = < 8
. o o = m
O = o
il il
g n O o g
£ L o £
w n w
w w
e w £ ¢
5 P e g
(1] e v}
& & +— S
{Ir ¢
o |5 (@) g
I £ J
- S -
B [e) 5
; 2 o ;
s = e
o &
\ “— \
_ %) _
: :
z =
k4 = - &
iy [} iy
& o) = &
5 © g
< — <
[J

NEPs computers

JNEPview demo

[tonian path problem above:

tance of the Ham

NS

ing the i

ing JNEP for solv
After pass 12

Trac

JE: NODE 1

JNep NOT

EQ

DE: NODE

ot

(@)

Oy

Coe

ODE 7

NO

JNep NODE:

39

ODE: NODE

JNep N

[k

DE: NODE 6

JNep N

)

ualizer

INep Vi

Archive

) Evolution Step: 7 Communication Step: 6

Step Fordward)

_ Step To...

Step Backward

NEPs computers

JNEPview demo

[tonian path problem above:

tance of the Ham

NS

ing the i

ing JNEP for solv
After pass 13

Trac

N

ek

Oy

7

2
a
s}
Zle
5
Z|=
.
\
o
|
o
\
o
pil]
Ty
o ~ @
A A &
Q <] <}
C o} a
8 o
| s o |
3 b
(2 2 |
] (vl e X VO
(OISO e e S Dt | (RIS
ST =9 IR
oot el el el o el ol e o \ !
ol o0 5 o0l al ol o) ol o 6) 6o ol 6l o 6|

INep Visualizer

Archive

k]
&
H

£
E

@
a
&

&

40

NEPs computers

An overview of a possible architecture for NEPs computers

® Layout of the architecture
® Solving an instance of the Hamiltonian path problem with NEPs
® Programming tools for NEPs
Graphic simulation environment on ‘classical’ architectures
* JNEP, a Java multithreaded NEP simulator
* |JNEPView, a graphical viewer for the simulation of J]NEP
* NEPsVL, avisual programming language for NEPs
* Brief introduction to AToM3
 NEPsVL
Simulation on clusters of computers

Textual programming languages independent on the architecture
® Some applications

Solving NP-problems with lineally bounded resources
Some applications of NEPs to language processing

ﬂ

NEPs computers
AToM3-NEPsVL Demo

® AToM3
Python software platform to develop visual domain languages
UML oriented model design
1. The user defines the class diagram
2. Extends it with graphical appearance

3. Generates a canvas where to graphically design the final program by

means of predefined buttons and menu options associated with the UML
diagram

4. Validates and generates code
¢® Demo

Double click on the atom3.py icon

ﬂ

NEPs computers

AToM3-NEPsVL Demo

How to design a new DSVL (domain specific visual language) with AToM3?
A ‘metamodel’ of the domain elements has to be defined. This is the NEP metamodel

AToM3 v0.2.2berliner using: ClassDiagramB
File Model Transformation Graphics Layout

ClassDiagramB| | Model ops | Editentity| Connect| Delete| Insert model| Expand madel ﬂ

Wisual ops Smnnth \nserlpnlnl| De\etepmr\t‘ Ehangecnnneclnr‘

Il

Class

processor_conn
ﬂ‘E consecutive_config stopping_condition _{Absir}
Esson -
o processor processor_rule rule {Abstr.}]
- = - - - - - - name type=String init.val

content type=List init.va

maximum, sleps
Q‘% steps type=Integer init.v

Metrics &
Redesign

inpulf fiter outpyt_fiter

viords_disappear
wards_ist type=List init

non_empty_node

regular_
Ins type:
hs type:

alphabet
symbols type=List init va

inserting deleting substituting
symbol type=String iniL.v symbal type=String init old 1
new

NEPs computers

AToM3-NEPsVL Demo

® How to design a new DSVL (domain specific visual language) with AToM3?

Then, the graphical appearance with wich each element of the domain will be
included in the programs has to be designed.

* The following (toy) example shows the one used for NEPs:
* Rectangles for processors and for the alphabet
» Triangles for filters
* Ovals for rules
» Texts for the rest

* When designing the graphical appearance the programmer also specifies the
set of proper actions that have to be performed when the element under
consideration is added to the programs

ﬂ

NEPs computers

AToM3-NEPsVL Demo

® How to design a new DSVL (domain specific visual language) with AToM3?
Graphical appearance of each element

Symbol B (DN

A Alphabet
Type: 2 Type: 2 B

&

. / &
Pemnitting: B : Permitting: B orbidditg:

M ame: P

A
Content: B

vMaximum:StepsSC 8

Type: 2 \ . Tope: 2
MName: F2 -

B
Cantent: Permitting: B

A
Pemitting: B orbidding: orbidding:

ﬂ

NEPs computers

AToM3-NEPsVL Demo

® How to design a new DSVL (domain specific visual language) with AToM3?

The buttons by means of wich the programmer will interact with AToM3 for
graphically design NEPs have also to be designed.

» The following figure shows the AToM?3 window for programming NEPs
» The first 11 buttons (below the title ‘NEPS’) insert into the program,

respectively
* A processor
o Afilter

* Adeletion rule

* A substitution rule

* Aninsertion rule

* A derivation rule (they will be described later)
* Four tipical stopping conditions

» The last 4 buttons adds extra features that ease the programming.
They will be explained in the following pages

ﬂ

NEPs computers

AToM3 v0.2.2berliner using; NEPs =13

File Model Transformation @Graphics Layout

HOW tO deSlgn a new DSVL MNEPs Model ops | Edit entit_l,l| Eonnect| Delete| Inzert model| Expand model| m

(domaln Specrflc Vlsual @ Wizal ops Smooth| Ingert point| Delete point| Change connector|
language) with AToM3? '

Buttons by means of #
wich the programmer will | ¥ |
interact with AToM3 =

@
MHew deriving
Mew congecutive_config
Mew masimum_zteps
Mew words_dizappear
MNew non_empty_node

Fi=Ned
Auto-filker
Complete graph

Gen. code
o
4

[— 2

|Editing ‘Manarmed' (modified) |Editing transf. ‘Monarmed' (not rmodi]

ﬂ

NEPs computers

AToM3-NEPsVL Demo

Some useful extra features of AToM3?
AToMs3 provides programmer with a set of useful features to simplify the
programming
» The programmer can specify several python programs to process the
complete program. They are very useful for, for example
» Validating the program (check semantic constraints that valid programs
have to comply with)
* Generating code (translate the graphic programs into other
representations, in the case of NEPs, for example, into xml files for
JNEP, or into NEPsLingua code)
» Launching some task after finishing the process of the program (for
example JNEP and jNEPView)

* Inthe previous page, these three features are associated with the last two
buttons

ﬂ

NEPs computers

AToM3-NEPsVL Demo

Some useful extra features of AToM3?

AToM? provides programmer with a set of useful features to simplify the
programming
* Graph grammars

* Some mechanical sections of the graphical programs can be
automatically written (actually drawn), for example

* The output and input filters of each processor can be automatically
added

» All the connections of complete graphs can also be automatically
added

» These two features are associated with the corresponding buttons
(‘auto-filter’ and ‘complete graph’) of the previous page

» Graph grammars are just grammars that change some ocurrences of a
subgraph

* These derivations rules are graphically defined in AToM3.

» The following page shows the ‘auto-filter’ and ‘complete graph’ rules

EJ

NEPs computers

AToM3-NEPsVL Demo

Some useful extra features of AToM3?

AToMs3 provides programmer with a set of useful features to simplify the
programming
e Graph grammars

Filters autofill

Tope: 1 Type: 1
Name: ANy Mame: <COFIED:
Contert: <ANY> Content: <COPIED:

& & I (
Permitting: /\forbidd\ng: Permitting: :Eorb\dding'
- — ' g g

Complete graph

Mame: <ANY> Hame: <ANY> Hame: <COPIED> Mame: <COPIED>

L]
Content: <AMY> Cortent: <AMY> —

Content: <COPIED>

Content: <COPIED>

51

NEPs computers

An overview of a possible architecture for NEPs computers

Layout of the architecture
Solving an instance of the Hamiltonian path problem with NEPs
Programming tools for NEPs
Graphic simulation environment on ‘classical’ architectures
Simulation on clusters of computers
Textual programming languages independent on the architecture
Some applications
Solving NP-problems with lineally bounded resources
Some applications of NEPs to language processing

52|

NEPs computers

Simulation on clusters of computers: motivation

Which hardware/software platform use to run NEPs programs?
There is no real hardware platform for NEPs

The theoretical improvement (in the performance) is lost when simulating them
on ‘conventional’ computers

Clusters of computers could be the best option
» To overtake the performance lost
« Although renouncing to the theoretical power

53]

NEPs computers

Simulation on clusters of computers: structure of the system

® Some of our researchers have developed a software C++/mpi platform for automatic
paralellisation of sequential codes using dynamic graphs partitioning and based on
user-adaptable load balancing

® The programmer has only to write its algorithm in a predefined way.

® The platform handles all the low level details ensuring the best possible performance
for the cluster under consideration.

ﬂ

Reconfiguration
Data : public ISerializable

public:

Data () ;
Data(

Data (Data&) ;
~Data () ;
print () ;

std::stringstream& operator<<(std::stringstreams) ;
std::stringstream& operator>> (std::stringstream&) ;

Reconfiguration
NEP : public Algorithm

isteps:
public:
NEP () ;
~NEP () ;

process (

kernel (Graph *) ;

save (Graph *,
end() ;

NEPs computers

An overview of a possible architecture for NEPs computers

Layout of the architecture
Solving an instance of the Hamiltonian path problem with NEPs
Programming tools for NEPs
Graphic simulation environment on ‘classical’ architectures
Simulation on clusters of computers
Textual programming languages independent on the architecture
* NEPsLingua
Some applications
Solving NP-problems with lineally bounded resources
Some applications of NEPs to language processing

59

NEPs computers
NEPsLingua: goals

® Syntax as close as possible to the one used to describe NEPs in the literature
® To reduce the complexity and size of other kinds of specification

Xml configuration files (JNEP)

Domain specific visual languages (NEPsVL)

® As close to P-Lingua as possible with the aim of offering a set of similar textual
programming languages to researchers who wants to use natural computing to solve
their problems

60

NEPs computers
NEPsLingua syntax (by examples)

¢ Directive @A for the alphabet of the NEP (its set of symbols)
@A={X,S,a,b,0,0}

“ @N for the nodes:

The most complex type of NEPs-Lingua data
Non indexed (defined by means of their names), {initial, final}
With numeric indices,

{m{i}: O<=i<=10}
With symbolic indices,

{s{i}: i->{o.a,b}}
That could be mixed in the same sentence for declaring the nodes of the NEP
(note the use of + for the union of sets)

@N={initial, final} + {m{i,j}: O<=i<=10, j->{o,a,b}}

o1

NEPs computers
NEPsLingua syntax (by examples)

® |Initial content

The set of strings that a given node initially contains. Notice that the node is
written as a parameter of the content directive @c

@c{n{X}} = {X, S}

® Rules
—-—> separates left and right hand side
They have to be contained in sets
represents the empty string
All types are available
* Insertion # -->a
» Deletion a -->#
e Substitution S-->a
And are put together in sets associated to the node by means of the directive @r

er{n{S}}= {a -->#, S-->a}
J¥J

NEPs computers
NEPsLingua syntax (by examples)

® Filters
We have grouped the different filters of the literature in six types
e Types11,2,3,4
» Defined by means of regular expressions
» Defined by sets of strings
Each node has an input and an oupt filter (suffixes 1 and of, respectively)
Each filter has its ‘permitting and forbidding contexts’ (prefixes p and)
We use the followting syntax for regular patterns
* Union []
* Intersection][
e Empty string #
Examples of filters for several nodes
@pif{n{S}}= {1, {abc, oo}}
@fof{initial}=
{@regular_pattern, (((aflb)+) 1L (c*) JIL # }
@pif{n{2,a}}= {@set, {a,ab,aabb}}

Kl

NEPs computers
NEPsLingua syntax (by examples)

® Connections (@C)
Complete graphs in a compatct form
@C=@complete
An explicit set of connections defined by means of pairs of nodes

eC={ (final,n{X}), (n{X},m{9,a}) }

® Stopping conditions (@S)
Two consecutive equal configurations@no_change
Take a maximum number of steps @max_steps
Some node is no more empty @non_empty_node

@S={ @no_change,
@max_steps = 3+4,
@non_emtpy_node={n{0}, n{X}}

ﬂ

NEPs computers

NEPsLingua syntax (complete examples)

® We will consider a toy NEP that
It has two nodes that, respectively, delete and insert the symbol B.

The initial word AB travels from one node to the other.
The first node removes the symbol B from the string before leaving it in the net.
The other node receives the string A and adds again the symbol B.

The resulting string comes back to the initial node and the same process takes
place again.

65|

NEPs computers

NEPsLingua syntax (complete examples)

® It has the following NEPSVL representation

Symbol B D
Type: 2

/

B
/ . Permitting: B orbidding:

Pemitting: B

I arme: P

A
Content: B

Alphabet

Symbol B |

Type: 2 \ : Twpe: 2
N & - I ame: P2 "
Permitting: B orbidding: Content: Permitting:

o -

Maximu m:StepsS C

NEPs computers

NEPsLingua syntax (complete examples)
® And the following xml specification for JNEP

<NEP nodes="2">
<ALPHABET symbols="A_B"/>
<GRAPH> <EDGE vertex1="0" vertex2="1"/> </GRAPH>
<EVOLUTIONARY_PROCESSORS>
<NODE initCond="A_B">
<EVOLUTIONARY_RULES>
<RULE ruleType="deletion" actionType="RIGHT"
symbol="B"
newSymbol=""/></EVOLUTIONARY_RULES>
<FILTERS> <INPUT type="2"
permittingContext="A_B"
forbiddingContext=""/>
<OUTPUT type="2"
permittingContext="A_B"
forbiddingContext=""/>
</FILTERS>
</NODE>

NEPs computers

NEPsLingua syntax (complete examples)

¢ And the following xml specification for JNEP

<NODE initCond="">
<EVOLUTIONARY_RULES>
<RULE ruleType="insertion" actionType="RIGHT"
symbol="B"
newSymbol=“"/> </EVOLUTIONARY_RULES>
<FILTERS> <INPUT type="2"
permittingContext="A_B"
forbiddingContext=""/>
<OUTPUT type="2"
permittingContext="A_B"
forbiddingContext=""/>
</FILTERS>
</NODE>
</EVOLUTIONARY_PROCESSORS>
<STOPPING_CONDITION>
<CONDITION type="MaximumStepsStoppingCondition"
maximum="8"/>
</STOPPING_CONDITION>
</NEP>

8|

NEPs computers

NEPsLingua syntax (complete examples)

® And the following NEPsLingua specification

@A={A,B}

@N={ n{i}: 0 <= i1 <= 1}
@c{n{0}}={A,B}
@r{n{0}}={B-->#}
er{n{1}}={#-->B}
@S={@max_steps = 8 }
@C={@complete}

® Itis obvious the liter size and greater simplicity of the NEPsLingua program
® These advantages are even greater as the NEPs becomes more complex

El

NEPs computers

NEPsLingua semantics (working on it)

® The semantic constraints for every NEPs-Lingua program are outlined below:

It contains exactly one alphabet and one set of node declarations.

It needs at most one of the following elements:
» Connection declaration set. By default, the graph is considered complete.
« Set of stopping conditions. @no__change is assumed by default.

Filters, rules and initial contents are optional.
Nodes have to be defined before they are used

Each symbol representing rules, filters and initial contents has to be included in
the alphabet

70

NEPs computers

NEPsLingua code generators (soon)

‘On demand’ at least for
JNEP (Xml configuration file)
Our cluster platform

7

NEPs computers

An overview of a possible architecture for NEPs computers

Layout of the architecture
® Solving an instance of the Hamiltonian path problem with NEPs
® Programming tools for NEPs
Graphic simulation environment on ‘classical’ architectures
Simulation on clusters of computers
Textual programming languages independent on the architecture
® Some applications
Solving NP-problems with lineally bounded resources
Some applications of NEPs to language processing

7]

NEPs computers

Solving NP problems with lineally bounded resources

® This possibility has been shown throughout the talk
Hamiltonian path problem

® ltis easy to generalize the use of NEPs (JNEP and our cluster platform) for other NP
problems

73]

NEPs computers

An overview of a possible architecture for NEPs computers

Layout of the architecture
Solving an instance of the Hamiltonian path problem with NEPs
Programming tools for NEPs
Graphic simulation environment on ‘classical’ architectures
Simulation on clusters of computers
Textual programming languages independent on the architecture
Some applications
Solving NP problems with lineally bounded resources
Some applications of NEPs to language processing

ﬂ

NEPs computers

Parsing of formal and natural languages run on clusters

Natural Language Processing (NLP) is a subfield of Computational Linguistics that
focuses on building automatic systems able to interpret or generate information
written in natural language

The syntactical level is one of the linguistic levels a typical NLP system has to cover:
To use parsers to detect valid structures in the sentences, usually in terms of a
certain grammar.

5]

NEPs computers
Other approaches

® Earley (one of the most efficient algorithms) and its derivatives provide parsing in
polynomial time, with respect to the length of the input:

Linear in the average case
nZ in the worst case for unambiguous grammars and
n3in the worst case for ambiguous grammars

® Bel Enguix, G., Jimenez-Lopez, M. D., Merca,s, R. and Perekrestenko, A. (2009):
Networks of evolutionary processors as natural language parsers. In proc. ICAART
09.

Outlines a bottom up approach to natural language parsing with NEPs
Extends NEPs with context dependent rules
Linear performance in the average case

76

NEPs computers
PNEPs: motivation

® PNEP goal:
NEP based and top-down strategy
Keeping expressive power of NEP processors bounded
Get a similar performance
Get all the possible derivations of each string
Without modifying the grammar
* No normal form needed
* Ambiguity allowed
* Recursive, erasing, renaming rules allowed

kd

NEPs computers
PNEPs: main extension to NEP

® PNEPs use context free rules rather than classic substitution rules A - B, AeV and
BeV*instead of A—> B, ABeV

It is a classic way of handling strings in theoretical computer science
It does not imply expressive power greater than regular

® In Csuhaj-Varju, E. Martin Vide, C., Mitrana, V.: HNEPs are Computationally
Complete. Acta Informatica; NEPs need different sets of additional nodes when
simulating the application of context free rules:

To rotate the string
To actually apply the rule and
To delete additional symbols

® We can consider this mechanism as a subrutine so we always can build a classic
NEP equivalent to any PNEP.

® This technique is sketched as follows:

78]

NEPs computers

NEPs to apply context free rules

® Locating the non terminal by rotation
Each symbol in the alphabet needs these additional nodes

“ Per. Input For. Input Per. Ouput For. Output
U\
{$}

1

N rotacion(x) X:= Zx (N U T) {zx}

N fotacion(x) gi=2¢ (leﬁ) {Zx} {X’}

N owin®) 2, :=¢ (right) {Z. X} x} z3
N :otacion(x) X=X {X} {Zx}

7]

NEPs computers

NEPs to apply context free rules

zZyx zy Z, X'zy Z, X'zy
2 Nuw® [Neww® [T Nuwa® | Niwa®
Xyz Z.yz X'Z.yz
l/
rotacmn X=Z " (N O T) {ZX}

N fotacion(x) 8= X, (Ieft) {Zx} {X,}

N fotacion(x) Zx := ¢ (right) {ny X’} {X,} {Zx}

N :otacion(x) X, = X {X,} {Zx}

EJ

NEPs computers

NEPs to apply context free rules

® Applying the rule
© EachrulerS —x, where x =X;X,...X,,
* Needs the following additional nodes: (k € {1,..,p})

“ Per. Input For. Input Per. Ouput For. Output

N reglal(r) : U\ (N Y T) {Yr}

N tegm(r) g = X' (left) Y, U X g X,) X,

N 2;:10’) Y, := ¢ (right) Y v {Xr1"'xrpr} {Xrl---err} Y,
N (0 XT\ = X, X, v, "

1

NEPs computers

NEPs to apply context free rules

S Y z2Y, y2z2Y,
S| N N (1) N () N (1)

y222

S,=yz

yZZ y222
yZ L N :eglal(r) N reglal(r) N reglal(r)

mm Per. Input For. Input Per. Ouput For. Output
S:=Y,

N () U\(NUT) v}

N :egm(r) g := X', (left) Y, U X X) X,

N () Yoi=e (right Y, Xy} Xy} Y,
) +H1+k

N :]eglil (1) X 1= X, X' Y, X',

Kl

NEPs computers

Context free grammar = PNEP translation

® A PNERP is built from a context free grammar in the following way:

We assume that each derivation rule in the grammar has a unique index that can
be used to reconstruct the derivation tree.

There is a node for each non terminal (*).
» Each node applies to its strings all the derivation rules for its non terminal.

» The filters, as well as the graph layout, allow all the nodes to share all the
intermediate steps in the derivation process.

An additional output node, is used to contain the parsed string: a version of the
input, enriched with information that will make it possible to reconstruct the
derivation tree (the rules indices). This node will only allow enter this parsed
string

The graph is complete.

The initial content of the node that corresponds to the axiom is the axiom itself.

® The designer could choose different contents for each node.
From just a node for all the derivation rules
To a node for each different right hand side (each rule) in the grammar

Kl

NEPs computers

Context free grammar =» PNEP translation

® For example (without the
additional output processor,
filters will be omitted for clarity):

: X—>SO

: S —»aShb
.S —ab

: 0—00

: 0—-00
O—o

o U A WN R

>

X—>SO

X

X Node

S—aSb
S—ab

0O—-00
0—-0o0
0O—o0

O Node

S Node

NEPs computers

Context free grammar =» PNEP translation

® The computation starts

X—->SO

X

X Node

S—aSb
S—ab

0—00
0—-0o0
0O—o0

O Node

S Node

NEPs computers

Context free grammar = PNEP translation

. . X—->SO
® The node of the axiom applies
its rule 1S0
S—aSb
S—ab
X Node
S Node
0—-00
0-00
O-0
O Node

NEPs computers

Context free grammar = PNEP translation

_ . X—SO
® Each node gets the strings it
can modify
S—aSh
S—ab
X Node 1S0
S Node
0—00
0—->00
O—o0

1S0

O Node

NEPs computers

Context free grammar =» PNEP translation

. . XSO
® And applies to them its rules
S—aSb
S—ab
X Node 12aSb0
13ab0
S Node
0O—-00
0—-0o0
0O—o0
1S400 1S500
1S60
O Node

NEPs computers

Context free grammar =» PNEP translation

. X—>SO
® The output node builds a regular
expression from the string being
parsed with the possible S—asb
sequence of applied rules S—ab
between its symbols. X Node 12aSh0
. 13ab0
® For example for the string abo
we will write for this rggular S Node
expression the following
r*ar*brxor*
0—-00
0-0o0
O-o0
1S400 1S500
1560

O Node Output node

NEPs computers

Context free grammar =» PNEP translation

.. XSO
¢ After some additional steps
computation finishes and the
output node contains: S—ash
13ab6o S—ab
X Node 12aSh0
13ab0
S Node
0—00
0—->00
O-o0
1S400 1S500 13ab6o
1S60
O Node Output node

NEPs computers
NEPsLingua for PNEPs

® Now, that we now NEPsLingua we can appreciate the simplicity and closeness of its
programs to the grammar corresponding to a PNEP.

® PNEP for parsing de context free grammar of these derivation rules
X — SO
S > aSb | ab
O >00 |J] oO]o

® Can be written in NEPsLingua as follows
eA={X,S,a,b,0,0}
@N={Ffinal }+{n{symbol}:symbol->{X,S,0}}
@c{n{X}3={X}
er{n{X}}= {X-->S0}
@r{n{S}}= {S-->aSb, S-->ab}
@er{n{0}}= {0-->0, 0-->00, 0O-->00}
EpiF{n{X}}={1.{X}} @pif{n{S}}={1.{S}} @pif{n{0}}={1,{0}}
@C=@complete
@S={ @non_emtpy_ node={final} }

o1

NEPs computers

NEPsLingua for PNEPs
® Only for comparison purposes, a possible]NEP xml specification file for the same NEP
is shown below

i <2xml version="1.0"2> 32 EI<EVOLUTIONARY_RULES>
3 E<NEP nodes="5"> 33 <RULE ruleType="substitution" actionType="ANY" synbol="X"
3 Hl<GRAPH> nEmSy‘mel=“2—l]_S_l]“,.">
4 <EDGE wertexl="0" wvertexiZ="4"/> 34 '<KEVOLUTION)\.RY_RULES>
5 <EDGE wertexl="0" wvertexa="3"/» 35 [J<FILTERS>
6 <EDGE vertex1="1" vertex2="4"/> 36 <INPUT type="1" permittingContext="X" forbiddingContext="";>
7 <EDGE wvertexl="1" 37 F</FILTERS>
g <EDGE vertexl="2" wvertexz="4"/> 38 < /NODE>
gl <EDGE wvertex1="2" vertexZ="3"/> 39 S|<NODE initCond="":
LE e 40 [J<EVOLUTIONARY RULES>
11 [<EVOLUTIONARY PROCESSORS> 41 <RULE ruleType="deletion" actionType="RIGHT" symbol=""/>
B <HO0T dmimdomc=t a=tlts 42 </EVOLUTIONARY RULES>
13 —|<EVOLUTIONARY RULES:=>
= 43 []«FILTERS>
14 <RULE ruleType="substitution" actionType="ANY" sywhol="S" 34 <INFUT type="2" permittingContext=
new3ymbol="0-0_a b"/> ” L ¥ P B ¥ " N . i
15 <RULE ruleType="substitution" actionType="ANY" sywbol="S§5" /:_a_h_h_u_o_o_l] D_U 1_1 0_1 1_1 2_2 IJ_S_I]_X EorbiGdingtontazt
new3ymbol="0-1_a § b"/> s | </FILTERS>
16 r</EVOLUTIONARY RULES> a6 b < /NODE>
S - < 1LTIRS> a7 <NODE initCond="">
18 <INPUT type="1" permittingContext="§" forbiddingContext=""/>
10 b /FILTERS> 45 —|<EVOLUTIONARY RULES:
20 b </NODE> 49 <RULE ruleType="deletion" actionType="RIGHT" symbol=""/>
21 SNODE initCond="n id=vivs 50 r</EVOLUTIONARY RULES>
2z —|<EVOLUTIONARY RULES:=> 51 [I<FILTERS>
= = inFi u ion=
23 <RULE ruleType="substitution' actionType='ANY' Symbol="Q" 52 <INPUT type="RegularLangMembershipFilter" regularExpression
newSymbol="1-0 o"/> " [0-9\-]1*%{a) [0-9%-]*(a) [0-9%-]*({b) [0-9%-]*(h) [0-0%-]*(0) [0-9%-]*(0)
24 <RULE ruleType="substitution" actionType="ANY" sywbol="0" [0-9%-1*(0)"/>
nEWSYTnbulzul_l_D_Du’/> 53 <OUTPUT type="1" permittingContext="" forbiddingContext=
25 <RULE ruleType="substitution' actionType="ANY" synbol="0" ‘aabboo o
nevSTIbOl="1-2 0 0% /> 54 </FILTERS=
26 [</EVOLUTIONARY RULES: S5 [</NODE>
27 [<FILTERS» 56 </EVOLUTIONARY PROCESZORS>
28 <INPUT type="1" permittingContext="0" forbiddingContext=""/> 57 [<STOPPING_CONDITION>
9 r</FILTERS> =1=1 <CONDITION type="HonEmptyHodeStoppingCondition" nodeID="4"/>
30 r</NODE> Sl r </3TOPP ING_CONDITION:
31 [E<NODE initCond="X" id="2"> &0 - «</NEP>

92

NEPs computers

PNEPs demo
® In the computer

93

NEPs computers

PNEPs implemented improvementes: bad terminals filtering

® The basic PNEP model generates strings from the axiom in a rather blind way.
® No terminal string is discarded until it is larger that the target string.

¢ Parsers usually discard parsing choices as soon as a terminal is not in its right place
(usually in a left to right order).

® We have implemented a naive filter that removes those strings that contains terminals
that do not belong to the target string.

ﬂ

NEPs computers

PNEPs implemented improvementes: depth first non terminal choice

® The basic PNEP model explicitly stores a different string for each different derivation that only
differs in the order in which non terminals are chosen. All these derivations corresponds to the
same derivation tree (we are not talking about ambiguity in this case)

® We actually only need a string to stand for each derivation tree. Top down techniques usually
solve this difficulty by applying some given order (usually the left-most non terminal is chosen)

® In the NEP config file, this rules are described with the following syntax:

<RULE ruleType="leftMostParsing" symbol="NON-TERMINAL" string="SUBSTITUTION_STRING"
nonTerminals="GRAMMAR_NON-TERMINALS"/>

® For that porpuse we have defined a new NEP rule. Given the rule r: A —a, the action of the rule
on a word w, r(w) is defined by

r(w)={t | w=w;Aw, and t=w,aw, and only_contains_terminals(w,), w;,w, are words over V}

o8|

NEPs computers

PNEPs non implemented improvementes: left and right-corner filtering

We have previously described the naive “bad terminals” filter we have implemented

We can add Left and right-corner filtering by checking both ends of the generated
strings: those strings with misplaced terminals in any of the ends (left or right) could
be discarded.

This test could be extended to the left-most (respectively right-most) non terminal by
means of the classic first (respectively last) sets.

o0

NEPs computers

PNEPs further research lines
We plan:

To add PNEP to our corpus and compare it with actual NLP parsers (Freeling,
etc.)

To add semantics to PNEP to design a compiler tool
To tackle some semantic NLP problem by means of the previous model

100

THANK YOU FOR YOUR ATTENTION

101

