Networks of Bio-Inspired Processors. An introduction

José M. Sempere Research Group on Computation Models and Formal Languages Departmento de Sistemas Informáticos y Computación Universitat Politècnica de València

Networks of Bio-Inspired Processors. An introduction

A NBP is a computational model which

... is inspired by biological aspects (darwinian evolution, DNA recombination, etc.)

... is computationally complete (it has the computation power of a Turing machine)

... is parallel and distributed

... is universal (allows the interpretation of NBPs as source data)

... solves NP-complete problems in "polynomial" time

Networks of Bio-Inspired Processors. An introduction

	P systems	NBPs
Computationally complete and universal	OK	ΟΚ
Parallel and distributed	OK	ΟΚ
Works with strings	OK	OK
Hardware implementations	OK+KO	OK + KO
Works with multisets of data	OK	OK
Software simulators	OK	OK + KO
In vitro/in vivo implementations	KO	КО
Efficient solutions to hard problems	ΟΚ	ОК

From NEPs to P Systems → Evolutionary P systems (Mitrana, Sempere 2009) From P Systems to NBPs → Open problem

Some bioinspired operators over strings and languages

<u>Superposition</u> Complementarity completion from double stranded strings

loop and double loop recombination DNA recombination based on gene assembly

inversion, duplication and transposition DNA fragments modification (operations on substrings)

... etc, etc.

The ingredients to define a Network of Bioinspired Processors

A finite set of processors that apply operations over strings which have been inspired by biomolecular functions and operations in the nature. The processors work with a multiset of strings.

A connection topology between processors in the form of a network.

A set of (input/output) filters which can be attached to the processors or to the connections.

Accepting Networks of Evolutionary Processors

An <u>evolutionary processor</u> over V is a 5-tuple (*M*,*PI*,*FI*,*PO*,*FO*), where:

Either $M \subseteq Sub_V$ or $M \subseteq Del_V$ or $M \subseteq Ins_V$ The set M represents the set of evolutionary rules of the processor.

 $PI,FI \subseteq V$ are the input permitting/forbidding contexts of the processor

PO,FO \subseteq V are the output permitting/forbidding contexts of the processor (with PI \cap FI= \varnothing and PO \cap FO= \emptyset)

We can define the following predicated for the filters

 $rc_{s}(z, P, F) \equiv [P \subseteq alph(z)] \land [F \cap alph(z) = \emptyset]$ $rc_{w}(z, P, F) \equiv [alph(z) \cap P = \emptyset] \land [F \cap alph(z) = \emptyset]$

Accepting Networks of Evolutionary Processors

$$\Gamma = (V, U, G, N, \alpha, \beta, x_1, x_0)$$

where

V and U are the input and network alphabets $G=(X_G, E_G)$ is an undirected graph without loops $N: X_G \rightarrow EP_U$ associates an evolutionary processor to every node in G $\alpha: X_G \rightarrow \{l, r, *\}$ associates an action mode to every node (Hybrid networks) $\beta: X_G \rightarrow \{s, w\}$ associates a filter predicate to every node x_l, x_o are the input and output nodes

Accepting Networks of Evolutionary Processors

 $\Gamma = (V, U, G, N, \alpha, \beta, x_1, x_0)$ How does the network work ?

(I) Evolutionary steps

 $\mathbf{C}_i \Longrightarrow \mathbf{C}_{i+1}$

- Every rule that can be applied is massively applied
- No competition between rules. All the rules are applied by using different copies

(II) Communication steps

 $\mathbf{C}_i \mapsto \mathbf{C}_{i+1}$

- Every processor sends all the filtered strings to its neighbours
- Every processor receives and stores filtered strings
- Strings that are sent but not received are lost

(III) Network at work

 $\mathbf{C}_{0} \! \Rightarrow \! \mathbf{C}_{1} \! \mapsto \! \mathbf{C}_{2} \! \Rightarrow \! \mathbf{C}_{3} \! \mapsto \! \mathbf{C}_{4} \! \dots$

Accepting Networks of Evolutionary Processors

 $\Gamma = (V, U, G, N, \alpha, \beta, x_I, x_O)$ Accepted language

- 1. There exists a configuration in which the set of words existing in the output node x_o is non-empty. (halting and accepting computation)
- 2. There exist two consecutive identical configurations. (halting and rejection computation)
- 3. It works forever.

L(Γ)={ $w \in V^*$: the computation of Γ on w is an accepting one}.

Accepting Networks of Splicing Processors

$$\Gamma = (V, U, G, N, \alpha, x_1, x_0)$$

Let $r=u_1#u_2$v_1#v_2$ an splicing rule then $(X, Y) \mapsto_r (W, Z)$ iff $x=x_1u_1u_2x_2$, $y=y_1v_1v_2y_2$, $w=x_1u_1v_2y_2$ and $z=y_1v_1u_2x_2$

 $\sigma_{R}(L) = \{ z, w \in V^{*} : (\exists u, v \in L, r \in R) [(u, v) \mapsto_{r} (z, w)] \}$

An <u>splicing processor</u> over *V* is a 5-tuple (*S*,*A*,*PI*,*FI*,*PO*,*FO*), where:

S is a finite set of splicing rules A is a finite set of auxiliary words The rest of elements are identical to the evolutionary case

Splicing steps $C'(x) = \sigma_{S_x}(C(x) \cup A_x)$

SAME ACCEPTANCE CRITERION AS IN THE EVOLUTIONARY CASE

Networks of Genetic Processors

Accepting Networks of Genetic Processors

 $\begin{array}{ll} \text{ANGP of size n is a tuple $\Gamma = (V, N_1, N_2, ..., N_n, G, N$)$} \\ \text{where V is an alphabet $\Gamma = (V, N_1, N_2, ..., N_n, G, N$)$} \\ \text{G=}(X_G, E_G)$ is an undirected graph without loops N_i (1 $\leq i $\leq n$)$ is a genetic processor over V} \\ \text{N: } X_G $\rightarrow \{N_1, N_2, ..., N_n\}$ associates a genetic processor to every node in the graph $P_1 = 1$ the graph $P_1 = 1$ to be a structure of $P_1, N_2, ..., N_n$} \\ \end{array}$

A <u>genetic processor</u> over V is a 5-tuple (M_R , A, PI, FI, PO, FO, α , β)

SAME ACCEPTANCE CRITERION AS IN THE EVOLUTIONARY CASE

Towards a full general model ...

First: Generalize the operations in the processors

Second: Generalize the filter positions

Towards a full general model ...

A <u>bio-inspired</u> processor over *V* is a 5-tuple (*op*,*PI*,*FI*,*PO*,*FO*), where:

op is a biologically inspired operation over strings $PI,FI \subseteq V$ are the input permitting/forbidding contexts of the processor

PO,FO⊆ V are the output permitting/forbidding contexts of the processor

- op encapsulates the operation parameters
- PI,FI,PO and FO can be empty so the filters are attached to the connections

Accepting Networks of Bio-Inspired Processors

$$\Gamma = (V, U, G, N, \beta, \gamma, x_I, x_O)$$

where

V and U are the input and network alphabets $G=(X_G, E_G)$ is an undirected graph without loops $N: X_G \rightarrow BP_U$ associate a bio-inspired processor to every node in G $\beta: X_G \rightarrow \{s,w\}$ associates a filter predicate to every node $\gamma: E_G \rightarrow 2^U \times 2^U$ associates a filter (P_e, F_e) to every edge in the graph x_{μ}, x_O are the input and output nodes

References

Networks of Evolutionary Processors

- J.Castellanos, Carlos Martín-Vide, Victor Mitrana, José M.Sempere. Networks of evolutionary processors. Acta Informatica 39, pp 517-529. 2003.
- M. Margenstern, V. Mitrana, M.J. Pérez-Jiménez. Accepting hybrid networks of evolutionary processors. In Proceedings of the International Meeting on DNA Computing, DNA 10, LNCS Vol. 3384, pp 235-246. Springer.2005.

Networks of Splicing Processors

- F. Manea, C. Martín-Vide, V. Mitrana. Accepting networks of splicing processors. In Proceedings of the First Conference on Computability in Europe, CiE 2005,LNCS Vol. 3526, pp 300-309. Springer. 2005.
- F. Manea, C. Martín-Vide, V. Mitrana. Accepting networks of splicing processors: complexity results. Theoretical Computer Science 371, pp 72-82. 2007.

Networks of Genetic Processors

- M. Campos, José M. Sempere. Accepting networks of genetic processors are computationally complete (*submitted*)
- M. Campos, José M. Sempere. Formal Language Generation with Networks of Genetic Processors (*submitted*)