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Everything started 12 years ago, in Turku...
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Great environment... ...with really big hats...
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...also the Magician was around
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...still, not too satisfied (with DNA computing)
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Let's go to the celll
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BUT, WE (THE MATHEMATICIANS) CAN SIMPLIFY:
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BUT, WE (THE MATHEMATICIANS) CAN SIMPLIFY:
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Functioning (basic ingredients):

e nondeterministic choice of rules and objects
e maximal parallelism
e transition, computation, halting

e internal output, external output

Result: Cell-like P system
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Gh. P3un,

The Oxford Handbook of
MEMBRANE

OMPUTING
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Handbook of Membrane Computing

Editors: Gheorghe Paun (Bucharest, Romania)
Grzegorz Rozenberg (Leiden, The Netherlands)
Arto Salomaa (Turku, Finland)

Advisory Board: E. Csuhaj-Varji (Budapest, Hungary)
R. Freund (Vienna, Austria)
M. Gheorghe (Sheffield, UK)
O.H. Ibarra (Santa Barbara, USA)
V. Manca (Verona, ltaly)
G. Mauri (Milan, ltaly)
M.J. Pérez-Jiménez (Seville, Spain)

Oxford University Press, 2010
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Introducing MC through 12 basic ideas:

1. Cell-like P system

II = (O,/,L,’U)l,...,wnglg---yRm7i0>7

where:
e (O = alphabet of objects

e /1 = (labeled) membrane structure of degree m
e w; = strings/multisets over O

e R; = sets of evolution rules
typical form ab — (a, here)(c,ins)(c, out)

e i, = the output membrane
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EXAMPLE
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a — blbg
cby — cb}

by — ba€inp,

\_ /

2

Computing system: n — n (catalyst, promoter, determinism, internal output)

Input (in membrane 1): a”

Output (in membrane 2): en
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Computational power (Universality)

Families NOP,,(«, tar), a € {coo, ncoo, cat} U{cat; |i > 1}, m > 1 or m = *.
Lemma 1. (collapsing hierarchy) NOP,(«,tar) = NOP,,(«, tar,)
for all a € {ncoo, cat,coo} and m > 2.

Theorem 1. NOP,(ncoo,tar) = NOP;(ncoo) = NCF.

Proof: use Lemma 1 and CD grammar systems
Theorem 2. NOP,(coo,tar) = NOP,,(coo,tar) = NRE, for all m > 1.
Theorem 3. [Sosik: 8], [Sosik, Freund: 6], [Freund, Kari, Sosik, Oswald: 2]

NOP;(caty, tar) = NRE

Conjecture NRE — NOP,(caty) # ()
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2. String objects:

...processed by string operations:

e rewriting
e splicing (DNA computing)

e other DNA-inspired operations

More complex objects, e.g., arrays
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3. Computing by communication: symport-antiport

(ab,in), (ab, out) — symport (in general, (x,in), (z, out))
(a,in; b, out) — antiport (in general, (u,in;v, out))

(max(|z], |y|) = weight)

System
II = (O,,u,wl,...,’wm,Elea-HaRmaiO)?

where EE C O is the set of objects which appear in the environment in arbitrarily
many copies
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Families NOP,,(sym,, anti,)
Power: (universality)

Theorem 4.

NRE = NOP(symg,antiz) = NOPy(syma,antig) = NOP;(syms,antig) =
NOPs(symq,antiq)

More general rules:
u] v — u'| v" — boundary (Manca, Bernardini)
ab — ayqr brar, — communication (Sosik)

ab — atarl btarg Ccome

a — Qtar
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4. Active membranes:

al ], — 18], g0 in
a], — b ], go out

aj, — b membrane dissolution
a — 1b], membrane creation
al; — [b] ][], membrane division
al,[b]; — [c],, membrane merging
al,[ ], — [[b];], endocytosis

lal]; = [0, ] exocytosis

ul; = | |;lulq; gemmation

Ql;, — 0 -Q,[Q], separation

and others
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5. tissue-like P systems - membranes in the nodes of a graph
population P systems

6. using P systems in the accepting mode
P automata

7. trace languages

8. numerical P systems

Basic idea: numerical variables in regions, evolving by “production functions”,
whose value is distributed according to “repartition protocols”; dynamical systems

approach (sequences of configurations), but also computing device (the set of values
of a specified variable).
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Example:

4 21 1[1]

25[3%’1 — 1|CB1,1 + 1|CB1’2

331’2[3] y L2.2 [1], L3 2 [O]

3
Ty, — T1,2 — 3T22 — 9 — 1|z22 + 1fz32 + 1]|T23

5131,3[2], 562’3[1]

213 — 4xo3 +4 — 2|x13+ 1|z2s + 1|z12

5131,4[2] y 5132,4[2] 3 5133,4[2]

14224234 — l|@1 4+ L|xoa + 1|x34 + 1|T32
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Results:

Theorem 5.

SLIN;" ¢ DSET™P,(poly' (1), nneg, div)
NTRE = SET" Pg(poly®(5), div) = SET " P;(poly°(6), div)

+ many research topics and open problems
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9. P systems with objects on membranes
(brane calculi inspired P systems)

10. P colonies (set of cells of a bounded capacity, with minimal object processing
rules)

11. spiking neural P systems

W. Maass movie about spiking neurons:

http://www.igi.tugraz.at/tnatschl/spike_trains_eng.html

Gh. P3un, Membrane computing at twelve years 24



a
a3(aa)*/a2 — a;0 8
a— a;0 a
a— a;0
a? = A

a2 — a; 0
a— A
a — a;O
a2—>)\
4 a3(aa)+/a2 — a;0

3

a® — a;0

1

9
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We get
st(II) = 0*10°10°10*10°10°10710° . . .,
that is, an infinite sequence of blocks of the form 02¢10%*=110%*T110%*1 with 7 > 2.

For g : {0,1}* — {0,1}* defined by

g(0"1071) = 0*Tt107 111,
g(w10"1071) = 0" 1107111,

for all w € {0,1}* and 4,5 > 1, define the infinite sequence f, as the limit of the
following sequence of strings:

fo = 0%10°1,
fri1 = fn 9(fn), for n > 0.

Then st(Il) = f,.

Gh. P3un, Membrane computing at twelve years 26



An SN memory module

0*1™0Y
memory module
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Formal definition:

II=(0,04,...,0m,syn,in,out),

where:
1. O = {a} is the singleton alphabet (a is called spike);

2. 01,...,0,, are neurons, of the form

04 = (nzaRz)al <1< m,

where:

a) n; > 0 is the initial number of spikes contained by the neuron;
b) R; is a finite set of rules of the following two forms:
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(1) E/a® — a;d, where E is a regular expression with a the only symbol used,
c>1,and d > 0O;

(2) a® — A, for some s > 1, with the restriction that a® € L(FE) for no rule
E/a® — a;d of type (1) from R;;

3. syn C{1,2,...,m} x{1,2,...,m} with (¢,7) ¢ syn for 1 < i < m (synapses
among neurons);

4. in,out € {1,2,...,m} indicate the input and the output neuron.

only out = generative system
only in = accepting system

both in, out = computing system
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Spike trains, types of output

FAMILIES: Spikgen P (ruley, cons,, forg,) — generative
Spikgce P (rule, cons,, forg,) — accepting (D.Spik, if deterministic)

Theorem 6. NEIN = Spik,e, Pi(rules, consy, forgy) = SpikgenPa(rule., cons,, forg.).

Theorem 7. Spikge,, Pi(rules, conss, forgs) = SpikaccPi(rules, conss, forga) = NRE.

Theorem 8. SLIN; = Spik,e, Pi(ruley, cons,, forg,, boundy), for all k> 3,
g>3,p>3 and s > 3.

Normal forms, generating languages and infinite sequences, small universal SN P
systems, etc.
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Extension (spiking requesting rules: E/\ « a")

Some results (extended):

Lemma 1. The number of configurations reachable after n steps by an extended
SN P system with request rules of degree m is bounded by a polynomial g(n) of
degree m.

Theorem 1. [If f : Vt — V' s an injective function, card(V) > 2, then there
is no extended SN P system II with request rules such that L;(V) = {x f(x) | x €
VT = L{(I).

Corollary 1. The following two languages are not in L{SNP, (in all cases,
card(V) =k > 2):

Li={zmi(z) |z eVT}, Ly={zx|zeVTL
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12: dP systems

A dP scheme (of degree n > 1) is a construct
A= (0,1,...,11,, R),

where:

1. O is an alphabet of objects;

2. 114, ...,1I,, are cell-like P systems with O as the alphabet of objects and the skin
membranes labeled with sq, ..., s,, respectively;

3. R is a finite set of rules of the form (s;,u/v,s;), where 1 <4i,j5 <mn, i # j, and
u,v € OF, with uv # A; |uv| is called the weight of the rule (s;,u/v,s;).
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A dP automaton is a construct
A=(0,F1,,....1I,, R),

where (O, 114, ...,1II,,, R) is a dP scheme, EE C O (the objects available in arbitrarily

many copies in the environment), I, = (O, pi, w; 1, ..., Wik, B, Ri1,..., Rik,) is
a symport/antiport P system of degree k; (without an output membrane), with the
skin membrane labeled with (i,1) = s;, forall : =1,2,... n.

A halting computation with respect to A accepts the string © = x125...x, over
O if the components Ily,...,II,, starting from their initial configurations, using
the symport/antiport rules as well as the inter-components communication rules,
in the non-deterministically maximally parallel way, bring from the environment the
substrings x1, ..., T,, respectively, and eventually halts.

Communication complexity, power, [efficiently] parallelizable languages, etc.
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Figure 1: The place of the families LP and LdP in Chomsky hierarchy
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SN dP Systems

An SN dP system is a construct
A= (0,1,...,1I,,esyn), where:
1. O ={a} (a = spike),

2. II; = (0,0i1,...,0ik,syn,in;) is an SN P system with request rules present
only in neuron ¢;,. — problem: relax this (o; ; = (n; ;, R; ;).

3. esyn is a set of external synapses, namely between neurons from different systems
II;, with the restriction that between two systems II;, II; there exist at most one
link from a neuron of II; to a neuron of II; and at most one link from a neuron
of II; to a neuron of 1I;.

The systems I1;, 1 < ¢ < n, are called components (or modules) of the system A.
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Languages, families:

L(A) is the set of all strings x € V* such that we can write © = z125 ... x,, with
|zi| — |x;]| <1 forall 1 <id,57 <mn, each component II; of A takes as input the
string x;,1 < ¢ < n, and the computation halts. Moreover, we can distinguish
between considering by as a symbol or not, like above, thus obtaining the languages
Lo(A), with a € {0,1,2,...} U {00, *}.

Lo,SNdP,, the family of languages L,(A), for A of degree at most n and
a€{0,1,2,...} U{oo, *}.
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Example ({ww | w € {b1, ba, .

.. ,bk}*} < Lk_|_QSNdP2)

IT4

/

\

I
. 21
4 N
CL3
a’/\ —a”,
1<r<k

Gh. P3un, Membrane computing at twelve years

38



Results (in general):

characterization of Turing computability (RE, NRE, PsRFE)
Examples: by catalytic P systems (2 catalysts) [Sosik, Freund, Kari, Oswald]
by (small) symport/antiport P systems [many]

polynomial solutions to NP-complete problems — even characterizations of
PSPACE (by using an exponential workspace

created in a “biological way’: membrane division, membrane creation, string
replication, etc) [Sevilla team|, [Milano team], [Obtulowicz], [Alhazov, Pan],
[Madrid team] etc

other types of mathematical results (normal forms, hierarchies, determinism versus
nondeterminism, complexity) [Ibarra group]

connections with ambient calculus, Petri nets, X-machines, quantum computing,
lambda calculus, brane calculus, etc. [many]

simulations and implementations (Adelaide, Sevilla, Madrid)

applications
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Open problems, research topics:

Many: see the P page

borderlines: universality /non-universality, efficiency/non-efficiency

(local problems: the power of 1 catalyst, the role of polarizations, dissolution, etc.
general problems: uniform versus semi-uniform, deterministic-confluent,
pre-computed resources, etc.)

semantics (events, causality, etc.)

neural-like systems (more biology, complexity, applications, etc.)

user friendly, flexible, efficient (!) software for bio-applications

MC and economics

implementations (electronics, bio-lab), dedicated hardware and software (P-lingua)

finding a killer-app
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Applications:

biology, medicine, ecosystems (continuous versus discrete mathematics) [Sevilla,
Verona, Milano, Sheffield, Nottingham, Ruston, etc.]

computer science (computer graphics, sorting/ranking, 2D languages,
cryptography, general model of distributed-parallel computing) [many]

linguistics (modeling framework, parsing) [Tarragona, Chisinau]
optimization (membrane algorithms [Nishida, 2004], [many - especially in Chinal])

economics ([Warsaw group], [R. Paun], [Vienna group])
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Applications of MC in biology, bio-medicine, ecology — several chapters in Handbook

A typical application in biology/medicine:

M.J. Pérez—Jiménez, F.J. Romero—Campero:

A Study of the Robustness of the EGFR Signalling Cascade Using Continuous
Membrane Systems.

In Mechanisms, Symbols, and Models Underlying Cognition. First International
Work-Conference on the Interplay between Natural and Artificial Computation,

IWINAC 2005 (J. Mira, J.R. Alvarez, eds.), LNCS 3561, Springer, Berlin, 2005,
268-278.

e 60 proteins, 160 reactions/rules
e reaction rates from literature

e results as in experiments
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Typical outputs:

Concentration (nM)

0.32

0.28—

0.24—

0.20

0.16

0.12

0.08—

0.04

000 T { T { T { T { T { T tlme (S)
10 20 30 40 50 60
100nM

200nM
300nM

o

The EGF receptor activation by auto-phosphorylation
(with a rapid decay after a high peak in the first 5 seconds)
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Concentration (nM)

5
4—
3%
2%
1%
o T { T { T { T { T { T { T { T { T tlme (S)
0 20 40 60 80 100 120 140 160 180
100nM
200nM
300nM

The evolution of the kinase MEK
(proving a surprising robustness of the signalling cascade)
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Other bio-applications:
e photosynthesis [Nishida, 2002]

e Brusselator [Suzuki, Verona, Milano]

e quorum sensing in bacteria [Nottingham, Sheffield, Sevilla]
e cancer related pathways [Sevilla, Ruston-Louisiana]

e circadian cycles [Verona]

e apoptosis [Ruston-Lousiana]

e signaling pathways in yeast [Milano]

e HIV infection [Edinburgh, Ruston-Louisiana]

e peripheral proteins [Trento]

e others [Milano, lasi, Bucharest, Sevilla, Verona, etc.]
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Modeling ecosystems

Y. Suzuki, H. Tanaka, Artificial life and P systems, WMC1, Curtea de Arges, 2000
(herbivorous, carnivorous, volatiles)

Lotka-Voltera model (predator-prey) [Verona, Milano]

M. Cardona, M.A. Colomer, M.J. Perez-Jimenez, S. Danuy, A. Margalida,
A P system modeling an ecosystem related to the bearded vulture, 6BWMC
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(Some) Results:
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Figure 2: Robustness
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Membrane algorithms — T'. Nishida

e candidate solutions in regions, processed locally (local sub-algorithms)
e better solutions go down
e static membrane structure — dynamical membrane structure

e two-phases algorithms

Excellent solutions for Travelling Salesman Problem (benchmark instances)
e rapid convergence

e good average and worst solutions (hence reliable method)
e in most cases, better solutions than simulated annealing

Still, many problems remains: check for other problems, compare with sub-
algorithms, more membrane computing features, parallel implementations (no free
lunch theorem)

Recent: L. Huang, N. Wang, J. Tao; G. Ciobanu, D. Zaharie; A. Leporati, D. Pagani;
M. Gheorghe et colab.
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SOFTWARE AND APPLICATIONS:

Verona (Vincenzo Manca: vincenzo.manca@univr.it)
Sheffield (Marian Gheorghe: M.Gheorghe®@dcs.shef.ac.uk)
Sevilla (Mario Pérez-Jiménez: marper@us.es) — P-lingua!
Milano (Giancarlo Mauri: mauri@disco.unimib.it)

Trento, Nottingham, Leiden/Edinburgh, Vienna, Evry, lasi
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Finally, satisfied...
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Hypercomputation = passing beyond the Turing barrier

Fypercomputation = passing polynomially beyond the NP barrier

So far: membrane division, membrane creation, string replication, pre-computed
resources

Further ideas:

e (local) acceleration (membranes, rules, objects)
e oracles
e w multiplicity (like in R systems) — SAT solved in poly time

e what else?
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Thank you!

...and please do not forget: http://ppage.psystems.eu

(with mirrors in China: http://bmc.hust.edu.cn/psystems,
http://bmchust.3322.0rg/psystemns)
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