General-Purpose GPU accelerated
simulation of membrane
systems

Manuel Garcia-Quismondo Fernandez

o A
<
53
&
4 s
D -‘i
S\ o
FEE
G

Index

A brief introduction to Membrane Computing
A brief Introduction to GP-GPU

Case study: The SAT Problem

Technology and design

Performance results

Conclusions and future work

A brief introduction to
Membrane Computing

4

a — a b’
" W,
a

What is Membrane
Computing?

A branch of Natural Computing
inspired by the structure and
functioning of the living cell [1]

[1] Gh. Paun. Membrane Computing. An introduction, Springer-
Verlag, 2002, X1+419p.

Smooth /
Rough endoplasmic Nucleus
endoplasmic : =
reticulum

fFIageIIum

Not in most

plant cells | Lysosome

 Centriole

Peroxisome

Golgi
apparatus

Microtubule

Cytoskeleton (Intermediate
filament

Microfilament

Plasma membrane

Mitochondrion

Copyright & 2003 Pearson Educaticn, Inc., publishing as Benjamin Cummings.

Bio-chemical processes
ocurr within living cells

Main Idea: Bio-chemical processes

can be interpreted as calculus
procedures

Look at cells as computing devices

4 _._/‘
Smooth
Rough endoplasmic . Nucleus
reticulum

reticulum

Not in most

plant cells Lysosome
Centriole
Rihosomes
Peroxisome
A apparatus 2 2 ~
Microtubule 7 Plasma membrani s
Cytoskeleton Intermediate L A
filament 4

Microfilament

ilishing as Be Cummings.

Model of cells as computing devices

Cytoskeleton {

Centriole

Peroxisome

Microtubule
Intermediate
filament

Microfilament

ion, nc.. publishing as Benjami

.) :

Not in most ivsasaie
plant cells Zysasoine,

Theoretical devices: P Systems or

Membrane Systems
1
2
3
af 4
gt { J
f—ff
E;,:I;J(c,im)
ff—f>f—abd

Membrane Computing model: syntax
and semantics

IS|Y/N/T/AIX]

These elements determine the
functioning of the Membrane
Systems defined within the model

Semantical key features

e Non-Determinism

e Maximal Parallelism

Key definitions

* Configuration
* Transition step
* Halting configuration

* Computation

Now, we introduce the concept of
recognizer P system

e ¥ Computation = halts
 {Yes, No} S I’

* Accepting or rejecting computation

A special kind of recognizer P
systems are confluent recognizer P
systems

* One of two possibilities

* Every computation is an accepting one

* Every computation is a rejecting one

A brief introductionto GP-GPU

r
4 NVIDIA |

P Systems are not yet
implemented

... which does not mean
that they will not be
implemented in the future

So far, all we can do is simulate
them by using different devices

We can use PCs

We can also use parallel devices

... it seems appropriate, as Membrane
Computing models are maximally parallel

A - o ————

"rucso'oq Ol"
AN N

ﬁm TR

e R TR R TSR R AR

_— - (LSS WYL W & N 3
4 fARs L8 0Y

ia.'H-..o .oor.....- b T e -

T miﬁﬁ% ﬁ..‘.f_. b

» = .
P S ame alh R - -
.
:

A0

%
QU
=
95
>
—
Q
N
Q
)
>
Q.
&
O
O

LA

Microcontrollers

Graphic cards

Graphic cards (GPUS) are designed for
graphics processing

Graphics processing are usually
parallel problems

Hence, GPUs are
parallel devices

However, solving general-purpose
problems with GPUs is not
straightforward

We need techniques to-adapt general-
purpose problems to be solved by GPUs

These techniques are studied by a
discipline named GP-GPU

Case study: the SAT problem

Key concepts

e Literal
e Clause

* Propositional formula in CNF

Key concepts

 Satisfiability of a propositional formula

Is this formula satisfiable?

Does there exist any combination of values
which makes the formula true?

NP-Complete problem

NP-Hard

P = NP

“NP-Complete A

NP

NP-Hard

P=NP =
NP-Complete

Efficient solution with P systems

(X1

ol liallNal

or X2 or
or EE or
or EE or

or X2 or

X3)
X3)
X3)
X3)

af

a—-—b’ﬁ
f— 17

b’ —= b
b —=b(e,in,)
ff—f = f— ad

P system with active membranes

e Electrical charges
* Division rules

* No cooperation

Division rules

* Membrane duplication

* Object replication

Division rules

Definition of PMC

Problems which can be
solved by P systems in
Polynomially bounded time

A family of P systems with
active membranes will solve
the SAT problem

All computations of a P system return
Yes iff the formula is satisfiable

All computations of a P system return
No iff the formula is not satisfiable

Codification of a formula

Given m clauses and n variables

Codification of a formula

x;j: Variable j appears on clause i in affirmative form

X;j: Variable j appears on clause i in negative form

Then, we use the following
codification

All P systems have a two-level
initial membrane structure (1)

The idea is to use membrane
division to create possible
scenarios (combinations of values)

Q_.

Membranes have associated
multisets

Hence, we have a three-leveled
parallel P system family

Technology and design

For our simulator, we use a
language named CUDA

<A NVIDIA.

CUDA.

This language is specifically
designed for GP-GPU

=R
2 NVIDIA |

9 4

CUDA describes a
programming model

Basically, the model
describes a grid

This grid is composed of blocks

Each block is composed of threads

FProcess
hiresd #1 Thremsl ¥

Time

Host

Device
Grid 1
Kernel 1 ——— pjock Block Block
(0, 0) (1, 0) (2, 0)
L1)
Block,.”| Block |\ Block
s \
(0, 1) (1,1) v (2,1)
”r "l “ Q“
'l’ o" ‘l' “
| Grid 27 v
) . - e % v
‘I 'l " \ 1
Kernel ——=-vv-—) 2 TR
2 ',’ 'Il “‘ ‘\‘
Y i N . | | I 1¢ %]
Block (1, 1)
Thread | Thread | Thread | Thread | Thread
Warp (0, 0) (1,0) (2,0) (3,0) (4, 0)
Thread | Thread | Thread | Thread | Thread
(0, 1) (1,1) (2, 1) (3,1) 4.1
Thread | Thread | Thread | Thread | Thread
(0, 2) 1, 2) 2,2 (3,2) 4. 2)

Thus, we have a three-level
parallel model, just like
our P system family

From this point of view, we
can assign responsibilities

FProcess

Time

Performance results

miliseconds

1000

Objects per membrane vs

IHIRIRRHRN HRTRERTRALATINY

H Sequential P systam
simulation

=

—

SN

[7] Paralle| F system
simulation

=—

NSSSSSSSS

=]

SN

—

=]

|

SN

=

mﬁ;ﬁ%

=

_—

i

SN

[Hybrid P system simulation

100

=]

—

sSpuoI3asI|iy

—

I

RSy

256

126

a2

Objects per membrane

SN

Membranes vs miliseconds

1000000

H Sequential P system
simulation

Parallel P system
simulation

100000

10000

m Hybrid P system simulation

10040

R SR

s |

Miliseconds

10

SRRy

]
e

o

RIRIRIRN IRENARN AR NN N AR AR RRRL A

SSaes
=
S, N

S
NN
e

o
i
T T

178K Zn6K 512K

I

=
L O O T T L T T T T IR T TTTTATT

TT]
RIRENRNNNN] RARRINENNE NN

I O OO O
O O OO O

\-\'\\.

I]l\

R

ey

STaanT

AR A

T
[

e

3

—\.
B
0
i
B
o
4
Lr
-
=
a
-
oy
=
aa
=
o
F
La
d
-~
£
-
—

I

Fua

[

Membranes

. Conclusions and future work

The Future

- NEXT EXIT]

GP-GPU is_a premising option
when simulating P systems

& ¢
% NVIDIA |
;

Execution times are
dramatically trimmed

We propose several
future works

GP-GPU simulators for Multienvironmental
Probabilistic P Systems

/}\\

| = \
N

\« :

/

Tt D\H/ D'\.

,,/

GP-GPU simulators for Tissue P Systems

GP-GPU simulators for Spiking
-~_Neural P Systems

=

11

. ciral i it‘lﬂl c1xol)
01
: 1 =
00

