Natural Minimal cells

First International School on Biomolecular and Biocellular Computing

Osuna, 5-7 September, 2011

Andrés Moya

Vniver§itatğıdValència

Symbiosis is a clearly widespread phenomena in the Biosphere

Moya et al. 2009. Nature Rev. Genet.

Vniver§itatÿīdValència

Endosymbiosis produces the smallest genomes

Delaye and Moya. 2010. Bioessays.

Vniver§itatğı**dV**alència

Establishment, maintenance and evolution of symbiosis

Bacterial symbioses in insects

- More than 20% of insects live in symbiotic relationship with microorganisms, allowing them to exploit a great variety of ecological niches
- In general, such insects feed on unbalanced diets, which are supplemented by endosymbionts

longitudinal section of an aphid

During the adaptation to intracellular life, endosymbionts have undergone drastic changes in their genomes

VNIVERSITATĂ D'VALÈNCIA Institut Cavanilles de Biodiversitat i Biologia Evolutiva

Carpenter ant: Omnivore

Cockroach: <u>Omn</u>ivore

CENTRO SUPERIOR DE INVESTIGACIÓN EN SALUD PÚBLICA

Insect hosts

Aphid: Plant-sap

Tse tse fly: Blood

Vniver&itatğıdValència

Reduced genome size in Gamma-proteobacteria

Vniver§itatÿidValència

Aphid (Baizongia pistaciae)

VNIVERSITATĂ ID VALÈNCIA Institut Cavanilles de Biodiversitat i Biologia Evolutiva

B. aphidicola BPI genome map

CENTRO SUPERIOR DE INVESTIGACIÓN EN

SALUD PÚBLICA

van Ham et al. 2003. PNAS.

VNIVERSITATĂ D'VALÈNCIA Institut Cavanilles de Biodiversitat i Biologia Evolutiva

Carpenter ant (Camponotus floridanus)

VNIVERSITATĂ D'VALÈNCIA Institut Cavanilles de Biodiversitat i Biologia Evolutiva

Blochmannia floridanus genome map

Blochmannia genome

yidD rpmH Abos prtC degQ yhcB rpiM rpsi yraP yrat 1041 yhbG yhbN yrbK yrbA murA Thr3 Giy1 bir rpsJ rpiC rpiD rpiW rpiB rpsSipA Lyn2 yock yccV rpsG rpsL iNG Trp Ala rfaD rfaF rfaC kdA rpmG RNAs Coenzyme metabolism H

Lipid metabolism |

Transcription K

- Pseudogenes
- Energy production and conversion C
- Cell division and chromosome partitioning D
- Amino acid transport and metabolism E
- Nucleotide transport and metabolism F
- Carbohydrate transport and metabolism G
- Posttranslational modification, protein turnover, chaperones O Inorganic ion transport and metabolism P Translation, ribosomal structure and biogenesis J Signal transduction mechanisms T Cell motility and secretion N DNA replication, recombination and repair L General function prediction only R Cell envelope biogenesis, outer membrane Function unknown S

Gil et. al. 2003. PNAS.

Vniver§itatõd València

Cockroach (Blatella germanica)

VNIVERSITATÕID VALÈNCIA Institut Cavanilles de Biodiversitat i Biologia Evolutiva

Circular map of Blattabacterium sp. Bge genome

López-Sánchez et al. 2009. PLoS Genetics.

Vniver§itatö́idValència

Blattabacterium sp. Bge detailed metabolism

VNIVERSITATĂ D'VALÊNCIA Institut Cavanilles de Biodiversitat i Biologia Evolutiva

Blattabacterium sp. Bge metabolism

VNIVERSITAT & EVOLUTIVA Institut Cavanilles de Biodiversitat i Biologia Evolutiva

Establishment, maintenance and evolution of symbiosis

Symbiotic consortia

VNIVERSITAT & DVALÈNCIA Institut Cavanilles de Biodiversitat i Biologia Evolutiva

Aphid (Cinara cedri)

Buchnera aphidicola: 416 kb

VNIVERSITAT & DVALÈNCIA Institut Cavanilles de Biodiversitat i Biologia Evolutiva

Endosymbionts of *C. cedri*

B. aphidicola

Wolbachia

Serratia symbiotica

CENTRO S INVESTIG SALUD PU

Gosalbes et al. 2008. J. Bacteriology.

VNIVERSITATĂ DVALÈNCIA Institut Cavanilles de Biodiversitat i Biologia Evolutiva

Morphological analyses

B. aphidicola coexists with Candidatus Serratia symbiotica

SALUD PÚBLICA

FISH

Semithin

VNIVERSITATĂ ID VALÈNCIA Institut Cavanilles de Biodiversitat i Biologia Evolutiva

Metagenomic approach

Smallest Buchnera genome

Pérez-Brocal et al. 2006. Science

VNIVERSITAT & BOOLENCIA Institut Cavanilles de Biodiversitat i Biologia Evolutiva

Serratia symbiotica SCc genome map

Vniver§itatÿīdValència

Genomic data

	S. proteamaculans	S. symbiotica SCc	<i>B. aphidicola</i> BCc
Life style	Free-living	Endosymbiont	Endosymbiont
Genome size (Mbp)	5.495	1.7	0.422
-chromosome	5.448	1.7	0.416
-plasmid	0.047	-	0.006
ORFS	4891 + 51	822	357 + 5
G+C content (%)	55	30	20,2
rDNA copies			
-16S	7	2	1
-23S	7	2	1
-5S	8	1	1
tRNA-aminoacil synthase	86	24	23
RecA	+	-	_
Insertion Sequences (IS)	4 IS type ISSpr1	not found	not present
	5 IS type ISSpr2		

VNIVER®ITATĂ®VALÈNCIA Institut Cavanilles de Biodiversitat i Biologia Evolutiva

Functional analyses

	Cofactors and vitamins biosynthetic capability		
	BCc	SCc	
Biotin	-	+	
Lipoate	+	+	
Folate	-	+	
Glutatione	-	+	
Heme and porphirin	-	+	
Nicotinate and nicotinamide	-	+	
Pantothenate and CoA	-	+	
Riboflavin	-	+	
Thiamine	-	+	
Ubiquinone	- +		

VNIVER®ITAT® DVALÈNCIA Institut Cavanilles de Biodiversitat i Biologia Evolutiva

Functional analyses

	Amino acid biosynthetic capability		
	BCc	SCc	
Essential			
Arginine	+	-	
Valine	+	-	
Leucine	+	-	
Isoleucine	+	-	
Lysine	+	-	
Threonine	+	+	
Methionine	-	+	
Histidine	+	-	
Phenylalanine	+	-	
Tryptophan	-/+	+/-	
Nonessential			
Tyrosine	+	-	
Proline, Glutamante, Glutamine, Cysteine, Aparatate, Asparagine, Alanine, Glycine, Serine	-	-	

VNIVER®ITAT® DVALÈNCIA Institut Cavanilles de Biodiversitat i Biologia Evolutiva

Tryptophan provision in *B. aphidicola*

VNIVERSITATĂ D'VALÈNCIA Institut Cavanilles de Biodiversitat i Biologia Evolutiva

Metabolic complementation

Tremblaya princeps: nested endosymbiosis

VNIVERSITAT & ID VALÈNCIA Institut Cavanilles de Biodiversitat i Biologia Evolutiva

The mealybug Planococcus citri (cotonet)

VNIVERSITAT & DVALÈNCIA Institut Cavanilles de Biodiversitat i Biologia Evolutiva

Endosymbionts described in the mealybug *Planococcus citri* (cotonet)

bacteriocyte

b: bacteria im: inner membrane om: outer membrane hc: host cell cytoplasm n: nucleus ss: symbiotic spheres tmb: three membrane bilayers

γ –proteobacterial probe

FISH (visualized by laser-scanning confocal microscopy)

 β -proteobacterial probe

von Dohlen et al. 2001. Nature.

Vniver§itatÿīdValència

A bacteria living inside another bacteria

Bacteriocyte

Primary endosymbiont:

β-proteobacteria *Tremblaya princeps*

Secondary endosymbiont:

γ-proteobacteria

Vniver§itatÿıdValència

...and applying the same metagenomic approach we carried out with the aphid *C. cedri*

Tremblaya princeps genome

Outer circle:

Blue: detected CDS. Green: Ribosomal operons Red: funtional tRNAs and tmRNA Grey: pseudogenes

Inner Circles: GCskew

López-Madrigal et al., *J. Bacteriology*, in press. McCutcheon and von Dohlen, *Current Biology*, 2011.

CENTRO SUPERIOF INVESTIGACIÓN EN SALUD PÚBLICA

VNIVERSITATĂ D'VALÊNCIA Institut Cavanilles de Biodiversitat i Biologia Evolutiva

Some comparative features

	Tremblaya princeps	<i>Candidatus</i> Hodgkinia cicadicola Dsem	<i>P. citri</i> secondary endosymbiont (PCSE)	Buchnera aphidicola BCc
Genome length (kb)	139	144	515	416
Genes	131	189	451	397
Protein coding genes	112	169	413	357
tRNAs	8	16	35	31
Pseudogenes	21	-	33	3
Ribosomal gene set	2	1	1	1
GC content (%)	59	58	44	20

Vniver§itatõidValència

Endosymbiosis produces the smallest genomes

VNIVERSITATĂ ID VALÈNCIA Institut Cavanilles de Biodiversitat i Biologia Evolutiva

Minimal Cells and Synthetic Biology

VNIVERSITATĂ D'VALÈNCIA Institut Cavanilles de Biodiversitat i Biologia Evolutiva

Synthetic life: two strategies

Harry Mulisch EL PROCEDIMIENTO orosie enderat

Victor Frankenstein's way or top-down

Victor Werker's way or bottom-up

Vniver\$itatÿidValència

Synthetic life: two strategies

CENTRO SUPERIOR D INVESTIGACIÓN EN SALUD PÚBLICA

From an analytical science to a synthetic one

Total Synthesis of a Tyrosine Suppressor Transfer RNA Gene

XVI. ENZYMATIC JOININGS TO FORM THE TOTAL 207-BASE PAIR-LONG DNA*

(Received for publication, August 17, 1978)

Takao Sekiya,‡ Tatsuo Takeya,§ Eugene L. Brown,¶ Ramamoorthy Belagaje, Roland Contreras,∥ Hans-Joachim Fritz,** Michael J. Gait,*** Robert G. Lees,§§ Michael J. Ryan,§§§ and H. Gobind Khorana

From the Departments of Biology and Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Kjeld E. Norris From The Danish Institute of Protein Chemistry, DK-2970 Hørsholm, Denmark

JBC 254:5787, 1979

Total Synthesis and Cloning of a Gene Coding for the Ribonuclease S Protein

Krishnan P. Nambiar Joseph Stackhouse Dora M. Stauffer W. Poindexter Kennedy J. K. Eldredge Steven A. Benner

Science 223:1299, 1984

4 YEARS 207-bp

1.5 YEARS 330-bp

Chemical Synthesis of Poliovirus cDNA: Generation of Infectious Virus in the Absence of Natural Template

Jeronimo Cello, Aniko V. Paul, Eckard Wimmer*

MONTHS 7740-bp

Science **297:**1016, 2002

PNAS **100:**1299, 2003

Generating a synthetic genome by whole genome assembly: ϕ X174 bacteriophage from synthetic oligonucleotides

Hamilton O. Smith, Clyde A. Hutchison III*, Cynthia Pfannkoch, and J. Craig Venter*

14-DAYS 5386-bp

VNIVERSITATÕBVALÈNCIA

From an analytical science to a synthetic one

Total synthesis of long DNA sequences: Synthesis of a contiguous 32-kb polyketide synthase gene cluster

~1 MONTH 32,000-bp

Sarah J. Kodumal, Kedar G. Patel, Ralph Reid, Hugo G. Menzella, Mark Welch, and Daniel V. Santi*

PNAS 101:15573, 2004

24 January 2008 / Page 1 / 10.1126/science.1151721

Sciencexpress

Research Article

Complete Chemical Synthesis, Assembly, and Cloning of a *Mycoplasma genitalium* Genome

Daniel G. Gibson, Gwynedd A. Benders, Cynthia Andrews-Pfannkoch, Evgeniya A. Denisova, Holly Baden-Tillson, Jayshree Zaveri, Timothy B. Stockwell, Anushka Brownley, David W. Thomas, Mikkel A. Algire, Chuck Merryman, Lei Young, Vladimir N. Noskov, John I. Glass, J. Craig Venter, Clyde A. Hutchison III, Hamilton O. Smith*

MONTHS? 582,970-bp

SCIENCE VOL 298 29 NOVEMBER 2002

Venter Gets Down to Life's Basics

Never shy about his aims, DNA sequencer J. Craig Venter Jr. announced this week that he has won a government grant to design a novel form of life. The U.S. Department of Energy's science office has awarded his group \$3 million over 3 years to "develop a synthetic chromosome," the first step toward making a self-replicating organism with a completely artificial genome.

Playing God? Craig Venter (right) and Hamilton Smith predict that they will have a synthetic genome up and running in 3 years.

Vniver§itatõidValència

The minimal genome concept

Minimal genome (Koonin, 2000):

"The smallest possible group of genes that would be sufficient to sustain a functioning cellular life form under the most favorable conditions imaginable:

in the presence of a full complement of essential nutrients

in the absence of environmental stress"

Essential functions:

cell structure maintenance

reproduction

evolution

Our approach to the minimal bacterial genome

MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, Sept. 2004, p. 518–537 1092-2172/04/\$08.00+0 DOI: 10.1128/MMBR.68.3.518–537.2004 Copyright © 2004, American Society for Microbiology. All Rights Reserved.

Vol. 68, No. 3

Determination of the Core of a Minimal Bacterial Gene Set†

Rosario Gil,^{1,2}* Francisco J. Silva,^{1,2} Juli Peretó,^{1,3} and Andrés Moya^{1,2}

Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Valencia,¹ and Departament de Genètica² and Departament de Bioquímica i Biologia Molecular,³ Universitat de València, Burjassot (València), Spain

1. Comparison of reduced genomes

Five complete genomes from insect endosymbionts (500-600 genes/0.6-0.7Mb) The human parasite *Mycoplasma genitalium* (480 genes/0.54Mb) *Phytoplasma asteris* (754 genes/0.86Mb)

2. Data on experimental genome minimization

M. genitalium, M. pneumoniae (global mutagenesis, Hutchison III et al. 1999) Bacillus subtilis (systematic inactivation, Kobayashi et al. 2003) Escherichia coli (global mutagenesis, Gerdes et al. 2003) Staphylococcus aureus (antisense RNA, Forsyth et al. 2002)

3. A minimalist metabolic network Alternative pathways Incomplete pathways Metabolic coherence

VNIVERSITATÕIDVALÈNCIA

Metabolic map

CENTRO SUPERIOR DE INVESTIGACIÓN EN SALUD PÚBLICA

VNIVERSITATĂ D'VALÈNCIA Institut Cavanilles de Biodiversitat i Biologia Evolutiva

Core of a minimal bacterial gene set

DNA metabolism		16
Basic replication machinery	13	
DNA repair, restriction and modification	3	
RNA metabolism		106
Basic transcription machinery	8	
Translation: aminoacyl-tRNA synthesis	21	
Translation: tRNA maturation and modification	6	
Translation: ribosomal proteins	50	
Translation: ribosome function, maturation and modification	7	
Translation factors	12	
RNA degradation	2	
Protein processing, folding and secretion		16
Protein posttranslational modification	2	
Protein folding	5	
Protein translocation and secretion	5	
Protein turnover	3	
Cellular processes		6
Energetic and intermediary metabolism		56
Poorly characterized		8

Vniver§itatğı**dValència**

Core of a minimal bacterial gene set

DNA metabolism		16
RNA metabolism		106
Protein processing, folding and secretion		16
Cellular processes		6
Cell division	1	
Transport	4	
Energetic and intermediary metabolism		56
Glycolisis	10	
Proton motive force generation	9	
Penthose phosphate pathway	3	
Lipid metabolism	7	
Biosynthesis of nucleotides	15	
Biosynthesis of cofactors	12	
Poorly characterized		8

Total

207

Vniver&itatÿidValència

BASIC INFORMATIONAL MACHINERY	M. genome	T. princeps	PCSE
1. INFORMATION, STORAGE, PROCESSING	122	52	122
1.1. DNA metabolism	16	4	16
1.1.1. Basic replication machinery	13	4	13
1.1.2. DNA repair, restriction, modification	3	0	3
1.2. RNA metabolism	106	48	106
1.2.1. Basic transcription machinery	8	4	8
1.2.2. Translation	96	44	96
1.2.2.1. Aminoacyl-tRNA synthesis	21	0	21
1.2.2.2. tRNA maturation and modification	6	0	6
1.2.2.3. Ribosomal proteins	50	39	50
1.2.2.4. Ribosome function, maturation, modification	7	2	7
1.2.2.5. Translation factors	12	4	12
1.2.3. RNA degradation	2	0	2
2. PROTEIN PROCESSING, FOLDING, SECRETION	15	6	15
2.1. Protein post-translational modification	2	0	2
2.2. Protein folding	5	5	5
2.3. Protein translocation and secretion	5	0	5
2.4. Protein turnover	3	1	3

CENTRO SUPERIOR DE INVESTIGACIÓN EN SALUD PÚBLICA

VNIVERSITATĂ ID VALÈNCIA Institut Cavanilles de Biodiversitat i Biologia Evolutiva

Our minimal genome for a hypothetical heterotrophic cell

Our minimal genome for a hypothetical heterotrophic cell

Vniver§itatÿidValència

Structural analysis of minimal metabolisms

VNIVERSITATĂ D'VALÈNCIA Institut Cavanilles de Biodiversitat i Biologia Evolutiva Topological parameters of the inferred metabolic networks from the minimal gene set and natural genomes ordered from high to small size

			Ļ			
Species	p-c genes	n			C	Cr
Bradyrhizobium japonicum	8317	1282	10.20	35	0.044	0.00150
Streptomyces coelicolor	8154	1119	10.10	29	0.064	0.00174
Meshorizobium loti	7272	1209	9.71	33	0.055	0.00165
Anabaena sp.	6131	970	9.76	29	0.041	0.00192
Nocardia farcinica	5936	1089	9.79	30	0.047	0.00174
Agrobacterium tumefaciens (w)	5402	1147	9.45	33	0.056	0.00171
Escherichia coli (CFT073)	5379	1120	10.20	34	0.075	0.00201
Escherichia coli (K-12)	4237	1215	10.30	35	0.067	0.00570
Mycobacterium tuberculosis	3991	1139	9.98	31	0.051	0.00167
Clostridium acetobutylicum	3848	784	9.56	25	0.061	0.00246
Synechocystis sp.	3264	918	10.50	30	0.044	0.00192
Brucella melitensis	3198	1197	8.54	31	0.049	0.00161
Lactobacillus plantarum	3059	864	9.64	26	0.067	0.00220
Haemophilus influenzae (d)	1657	775	10.00	30	0.065	0.00250
Prochlorococcus marinus	1760	844	10.50	30	0.045	0.00210
Wolbachia (Bma)	1195	516	8.76	28	0.075	0.00321
Rickettsia prowazekii	886	517	8.41	24	0.042	0.00299
Tropheryma whipplei	839	426	11.60	43	0.027	0.00475
Wigglesworthia brevipalpis	617	561	11.40	35	0.035	0.00308
Blochmannia floridanus	583	634	8.47	26	0.046	0.00273
Buchnera aphidicola	504	443	7.76	25	0.042	0.00395
Mycoplasma genitalium	484	207	7.49	23	0.043	0.00826
Minimal gene set	208	165	5.34	18	0.031	0.00977

p-c, number of proteincoding genes

n, number of nodes

L, average path length;

D, network diameter

C, clustering coefficient;

Cr, clustering coefficient for random network.

CENTRO SUPERIOR DE INVESTIGACIÓN EN SALUD PÚBLICA

Vniver§itatõidValència

Effect of network size on the deviation of the clustering coefficient from expected random scenario

Minimal gene set

VNIVERSITATÕBVALÈNCIA

Network damage analysis for the minimal metabolic network

d, number of metabolites whose synthesis is prevented by a given mutation

Most mutations (76%) in metabolic enzymes encoded in the minimal genome prevent the synthesis of at least one compound.

In the *E. coli* metabolic network the vast majority of the mutations produced no network damage

Vniver§itatõidValència

Modular organization in the reductive evolution of protein-protein interaction networks

Vniver§itatÿidValència

View of the three major modules of *E. coli* and *Buchnera*

Deletion of interactions produce reduced modularity

VNIVERSITATĂ D'VALÈNCIA Institut Cavanilles de Biodiversitat i Biologia Evolutiva

Shared thoughts with this audience

Under different views and definitions, the history of Biology is a cocktail of analytic and synthetic approaches to living beings.

Computing probably represents the best language to formalize biological processes.

Gödel's theorems tell us that there might appear biological features that cannot be fully explained within a particular system.

Then, we must paid attention to those Synthetic Biology approaches stating that 'every thing is under control'.

An alternative and positive view to the previous conclussion is that the best Synthetic Biology should be one based on the continuous increase of empirical and computational biological knowledge.

Synthetic Biology can take advantage from natural minimal cells.

VNIVERSITAT & BOOLENCIA

Evolutionary Genetics Group

Genomics and Health

Vniver§itatõ@València

Funding Agencies

Europe Marie Curie ITN "Symbiomics" COST on "Arthropod Symbiosis"

Spain Ministerio de Ciencia e Innovación

Valencian Government Prometeo Program

VNIVERSITATÕIDVALÈNCIA

FP7/2007-2013, grant agreement # 212894

VNIVERSITAT & DVALÈNCIA Institut Cavanilles de Biodiversitat i Biologia Evolutiva